The Mayo Clinic SPORE in Pancreatic Cancer has built a robust environment to facilitate high quality research by our talented investigators. Our goal is to apply innovative technologies and resources in basic/clinical/population research to achieve the best strategies for prevention, early detection and therapy and increase survival of this devastating malignancy. The SPORE aims to: 1) Provide the scientific leadership and organization to sustain and support outstanding translational pancreatic cancer (PC) research;2) Provide the organizational infrastructure to facilitate communication and promote interactions among SPORE investigators and the larger research community;3) Provide resources to develop innovative research projects in translational PC research;4) Foster career development in translational PC research;and 5) Assure excellence of research through a rigorous internal review process of the SPORE research programs and projects, with periodic review and support from a panel of outstanding external advisors. We have developed a responsive infrastructure that has spawned innovative research and interdisciplinary interactions, attracting committed investigators. Mayo Clinic sees -725 PC patients yearly, constituting 1.7% of all PC cases in the US. Four cores (Administrative, Biostatistics, Clinical Research, and Tissue) will provide support. Project 1 (new) will identify NFATs and NFAT-dependent target genes and roles, and conduct a Phase I study using cyclosporine A and gemcitabine-abraxane. Project 2 (new) will establish the role of NAD in PC, and use small molecule SIRT1 activating compounds in preclinical studies as well as a Phase I trial using SRT3025 with gemcitabine and abraxane. Project 3 (continuing) will use pursue findings that activation of innate immunity and chemotherapy can synergize curatively against pancreatic cancer, perform Phase l-ll trials which combines the TLRS agonist VentiRx-2337 with cyclophosphamide as second line therapy after FOLFIRINOX, optimizing a vaccine against PC-associated MUC1. Project 4 (new) will identify roles of DNA repair in PC and target patients with double-stranded DNA repair defects for individualized treatment in a Phase II study of the PARP inhibitor rucaparib in chemotherapy refractive PC.

Public Health Relevance

The Mayo Clinic SPORE in Pancreatic Cancer provides a highly supportive environment to foster translational research. Four innovative research projects, pilot awards, and career development awards will be enabled by resources of biostatistics, tissue, and clinical research cores. The ultimate goal is to apply research findings toward prevention, early detection, and therapy to improve survival of pancreatic cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Program Officer
Agarwal, Rajeev K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Liou, Geou-Yarh; Döppler, Heike; Necela, Brian et al. (2015) Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discov 5:52-63
Zhen, David B; Rabe, Kari G; Gallinger, Steven et al. (2015) BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med 17:569-77
Delgiorno, Kathleen E; Hall, Jason C; Takeuchi, Kenneth K et al. (2014) Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology 146:233-44.e5
Li, Liang; Fridley, Brooke L; Kalari, Krishna et al. (2014) Discovery of genetic biomarkers contributing to variation in drug response of cytidine analogues using human lymphoblastoid cell lines. BMC Genomics 15:93
Halfdanarson, Thorvardur R; Bamlet, William R; McWilliams, Robert R et al. (2014) Risk factors for pancreatic neuroendocrine tumors: a clinic-based case-control study. Pancreas 43:1219-22
Mills, Lisa D; Zhang, Lizhi; Marler, Ronald et al. (2014) Inactivation of the transcription factor GLI1 accelerates pancreatic cancer progression. J Biol Chem 289:16516-25
Chini, Claudia C S; Guerrico, Anatilde M Gonzalez; Nin, Veronica et al. (2014) Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 20:120-30
Wu, Lang; Goldstein, Alisa M; Yu, Kai et al. (2014) Variants associated with susceptibility to pancreatic cancer and melanoma do not reciprocally affect risk. Cancer Epidemiol Biomarkers Prev 23:1121-4
Calvo, Ezequiel; Grzenda, Adrienne; Lomberk, Gwen et al. (2014) Single and combinatorial chromatin coupling events underlies the function of transcript factor Krüppel-like factor 11 in the regulation of gene networks. BMC Mol Biol 15:10
Urrutia, Raul; Velez, Gabriel; Lin, Marisa et al. (2014) Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins. J Mol Model 20:2357

Showing the most recent 10 out of 152 publications