The Mayo Clinic SPORE in Pancreatic Cancer has built a robust environment to facilitate high quality research by our talented investigators. Our goal is to apply innovative technologies and resources in basic/clinical/population research to achieve the best strategies for prevention, early detection and therapy and increase survival of this devastating malignancy. The SPORE aims to: 1) Provide the scientific leadership and organization to sustain and support outstanding translational pancreatic cancer (PC) research; 2) Provide the organizational infrastructure to facilitate communication and promote interactions among SPORE investigators and the larger research community; 3) Provide resources to develop innovative research projects in translational PC research; 4) Foster career development in translational PC research; and 5) Assure excellence of research through a rigorous internal review process of the SPORE research programs and projects, with periodic review and support from a panel of outstanding external advisors. We have developed a responsive infrastructure that has spawned innovative research and interdisciplinary interactions, attracting committed investigators. Mayo Clinic sees -725 PC patients yearly, constituting 1.7% of all PC cases in the US. Four cores (Administrative, Biostatistics, Clinical Research, and Tissue) will provide support. Project 1 (new) will identify NFATs and NFAT-dependent target genes and roles, and conduct a Phase I study using cyclosporine A and gemcitabine-abraxane. Project 2 (new) will establish the role of NAD in PC, and use small molecule SIRT1 activating compounds in preclinical studies as well as a Phase I trial using SRT3025 with gemcitabine and abraxane. Project 3 (continuing) will use pursue findings that activation of innate immunity and chemotherapy can synergize curatively against pancreatic cancer, perform Phase l-ll trials which combines the TLRS agonist VentiRx-2337 with cyclophosphamide as second line therapy after FOLFIRINOX, optimizing a vaccine against PC-associated MUC1. Project 4 (new) will identify roles of DNA repair in PC and target patients with double-stranded DNA repair defects for individualized treatment in a Phase II study of the PARP inhibitor rucaparib in chemotherapy refractive PC.

Public Health Relevance

The Mayo Clinic SPORE in Pancreatic Cancer provides a highly supportive environment to foster translational research. Four innovative research projects, pilot awards, and career development awards will be enabled by resources of biostatistics, tissue, and clinical research cores. The ultimate goal is to apply research findings toward prevention, early detection, and therapy to improve survival of pancreatic cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA102701-15
Application #
9544857
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Nothwehr, Steven F
Project Start
2014-09-18
Project End
2019-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
15
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Antwi, Samuel O; Bamlet, William R; Pedersen, Katrina S et al. (2018) Pancreatic Cancer Risk is Modulated by Inflammatory Potential of Diet and ABO Genotype: A Consortia-based Evaluation and Replication Study. Carcinogenesis :
Klein, Alison P; Wolpin, Brian M; Risch, Harvey A et al. (2018) Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 9:556
Antwi, Samuel O; Petersen, Gloria M (2018) Leukocyte Telomere Length and Pancreatic Cancer Risk: Updated Epidemiologic Review. Pancreas 47:265-271
Penheiter, Alan R; Deelchand, Dinesh K; Kittelson, Emily et al. (2018) Identification of a pyruvate-to-lactate signature in pancreatic intraductal papillary mucinous neoplasms. Pancreatology 18:46-53
Nagpal, Sajan Jiv Singh; Bamlet, William R; Kudva, Yogish C et al. (2018) Comparison of Fasting Human Pancreatic Polypeptide Levels Among Patients With Pancreatic Ductal Adenocarcinoma, Chronic Pancreatitis, and Type 2 Diabetes Mellitus. Pancreas 47:738-741
Wolf, Susan M; Scholtes, Emily; Koenig, Barbara A et al. (2018) Pragmatic Tools for Sharing Genomic Research Results with the Relatives of Living and Deceased Research Participants. J Law Med Ethics 46:87-109
Tamura, Koji; Yu, Jun; Hata, Tatsuo et al. (2018) Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 115:4767-4772
Chaffee, Kari G; Oberg, Ann L; McWilliams, Robert R et al. (2018) Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med 20:119-127
Shroff, Rachna T; Hendifar, Andrew; McWilliams, Robert R et al. (2018) Rucaparib Monotherapy in Patients With Pancreatic Cancer and a Known Deleterious BRCA Mutation. JCO Precis Oncol 2018:
McWilliams, Robert R; Wieben, Eric D; Chaffee, Kari G et al. (2018) CDKN2A Germline Rare Coding Variants and Risk of Pancreatic Cancer in Minority Populations. Cancer Epidemiol Biomarkers Prev 27:1364-1370

Showing the most recent 10 out of 336 publications