We have selected four developmental projects using the criteria that 'developmental projects should provide an avenue for introducing and integrating new investigators and innovative technologies and/or methodologies into the ICMIC infrastructure and molecular imaging'. The four developmental projects cover a range of topics, such as (i) force propagation in melanoma cancer progression, (ii) imaging peritumoral stromal depletion as a surrogate for treatment efficacy in pancreatic cancer, (iii) lung-specific Twist mediated epithelial to mesenchymal transition (EMT) in lung premetastatic niche, and (iv) blockade of the hypoxia inducible factor (HIF)-1 pathway in bone metastasis from renal cancer. Three of the developmental projects are contributed by clinician-scientists and demonstrate the strong engagement of clinicians in the JHU ICMIC Program. The developmental projects will utilize the infrastructure provided by the resources. These projects are also strongly interactive with the research components. As this is an area of high priority, we have obtained additional funds of $24K per year from the Chairman of the Sidney Kimmel Comprehensive Cancer Center, $10K per year from the Chairman of Biomedical Engineering, and $10K for the first two years from the Chairman of Radiation Oncology to supplement the Developmental Fund. We therefore anticipate funding 10-15 pilot projects within the course of the five-year program. During the previous funding period we supported eleven developmental projects. Six of these initial projects transformed into funded grants. We anticipate that the new developmental projects and the investigators will continue the exciting trend of high risk, high reward research of molecular imaging in cancer.

Public Health Relevance

The developmental projects that we have selected will enable outstanding investigators to incorporate molecular imaging to provide new perspectives and insights into their research. These developmental projects, if successful, will provide advances in the discovery and treatment of cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
van Zijl, Peter C M; Lam, Wilfred W; Xu, Jiadi et al. (2017) Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage :
Penet, Marie-France; Kakkad, Samata; Pathak, Arvind P et al. (2017) Structure and Function of a Prostate Cancer Dissemination-Permissive Extracellular Matrix. Clin Cancer Res 23:2245-2254
Malek, Reem; Gajula, Rajendra P; Williams, Russell D et al. (2017) TWIST1-WDR5-Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis. Cancer Res 77:3181-3193
Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata et al. (2017) Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget 8:17981-17994
Xu, Jiadi; Chan, Kannie W Y; Xu, Xiang et al. (2017) On-resonance variable delay multipulse scheme for imaging of fast-exchanging protons and semisolid macromolecules. Magn Reson Med 77:730-739
Chatterjee, Samit; Lesniak, Wojciech G; Miller, Michelle S et al. (2017) Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun 483:258-263
Miller, Michelle S; Maheshwari, Sweta; McRobb, Fiona M et al. (2017) Identification of allosteric binding sites for PI3K? oncogenic mutant specific inhibitor design. Bioorg Med Chem 25:1481-1486
Chen, Ying; Chatterjee, Samit; Lisok, Ala et al. (2017) A PSMA-targeted theranostic agent for photodynamic therapy. J Photochem Photobiol B 167:111-116
Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena et al. (2016) Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Sci Rep 6:27871
Chan, Kannie W Y; Jiang, Lu; Cheng, Menglin et al. (2016) CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR Biomed 29:806-16

Showing the most recent 10 out of 210 publications