The Imaging and Probes Resource will provide a seamless translational approach that will integrate multimodality MR, PET, SPECT, and optical imaging and probe development to understand and effectively treat cancer. The research studies in this JHU ICMIC application require a wide range of imaging methods and imaging probe development that span the imaging of microscopic structures such as collagen 1 fibers, to preclinical imaging of human cancer xenografts and transgenic models, to imaging cancer patients. This resource will provide the requisite infrastructure and act as a central resource for JHU ICMIC investigators to obtain expertise and assistance for multi-modality imaging, image visualization and analyses, and imaging probe development. This resource will also perform research and development in imaging and probe development in the JHU ICMIC. The resource will play a valuable role in identifying and developing novel imaging technologies and probes as individual research projects evolve within the program.
The aims of this resource are to: (i) Guide and assist investigators in the use of imaging technologies, and to identify the most appropriate imaging technology for the research studies, (ii) Develop and provide state-of- the-art image analyses and visualization necessary for multi-modality imaging data, (iii) Identify, develop, and provide novel contrast agents for MR, radionuclide, and optical imaging applications, (iv) Develop agents against critical targets identified during the course of the research programs in the center, (v) Identify the most promising preclinical Imaging techniques and agents for future clinical use. Members of this resource are versatile in imaging and probe development and can function interchangeably in this resource resulting in a commonality of effort.

Public Health Relevance

The Imaging and Probes Resource is a cornerstone of our JHU ICMIC as it is the centralized resource that assists investigators in imaging and probe development. It will also lead advances in imaging and probes, and interact with the Molecular Oncology Resource in advancing our purpose of applying molecular imaging to advance cancer discovery and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA103175-09
Application #
8728585
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
9
Fiscal Year
2014
Total Cost
$110,442
Indirect Cost
$39,755
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Nakamura, Hideki; Lee, Albert A; Afshar, Ali Sobhi et al. (2018) Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions. Nat Mater 17:79-89
Krishnamachary, Balaji; Danhier, Pierre; Kakkad, Samata et al. (2018) Hypoxia-Induced Reporter Genes with Different Half-Lives. Methods Mol Biol 1790:113-125
Plyku, Donika; Mena, Esther; Rowe, Steven P et al. (2018) Combined model-based and patient-specific dosimetry for 18F-DCFPyL, a PSMA-targeted PET agent. Eur J Nucl Med Mol Imaging 45:989-998
Pickett, Julie E; Thompson, John M; Sadowska, Agnieszka et al. (2018) Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone. Bone Res 6:13
Cheng, Menglin; Glunde, Kristine (2018) Magnetic Resonance Spectroscopy Studies of Mouse Models of Cancer. Methods Mol Biol 1718:331-345
van Zijl, Peter C M; Lam, Wilfred W; Xu, Jiadi et al. (2018) Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage 168:222-241
Lesniak, Wojciech G; Aboye, Teshome; Chatterjee, Samit et al. (2017) In vivo Evaluation of an Engineered Cyclotide as Specific CXCR4 Imaging Reagent. Chemistry 23:14469-14475
Xu, Jiadi; Chan, Kannie W Y; Xu, Xiang et al. (2017) On-resonance variable delay multipulse scheme for imaging of fast-exchanging protons and semisolid macromolecules. Magn Reson Med 77:730-739
Penet, Marie-France; Kakkad, Samata; Pathak, Arvind P et al. (2017) Structure and Function of a Prostate Cancer Dissemination-Permissive Extracellular Matrix. Clin Cancer Res 23:2245-2254
Salas Fragomeni, Roberto Andres; Menke, Joshua R; Holdhoff, Matthias et al. (2017) Prostate-Specific Membrane Antigen-Targeted Imaging With [18F]DCFPyL in High-Grade Gliomas. Clin Nucl Med 42:e433-e435

Showing the most recent 10 out of 218 publications