We have selected four developmental projects using the criteria that 'developmental projects should provide an avenue for introducing and integrating new investigators and innovative technologies and/or methodologies into the ICMIC infrastructure and molecular imaging'. The four developmental projects cover a range of topics, such as (i) force propagation in melanoma cancer progression, (ii) imaging peritumoral stromal depletion as a surrogate for treatment efficacy in pancreatic cancer, (iii) lung-specific Twist mediated epithelial to mesenchymal transition (EMT) in lung premetastatic niche, and (iv) blockade of the hypoxia inducible factor (HIF)-1 pathway in bone metastasis from renal cancer. Three of the developmental projects are contributed by clinician-scientists and demonstrate the strong engagement of clinicians in the JHU ICMIC Program. The developmental projects will utilize the infrastructure provided by the resources. These projects are also strongly interactive with the research components. As this is an area of high priority, we have obtained additional funds of $24K per year from the Chairman of the Sidney Kimmel Comprehensive Cancer Center, $10K per year from the Chairman of Biomedical Engineering, and $10K for the first two years from the Chairman of Radiation Oncology to supplement the Developmental Fund. We therefore anticipate funding 10-15 pilot projects within the course of the five-year program. During the previous funding period we supported eleven developmental projects. Six of these initial projects transformed into funded grants. We anticipate that the new developmental projects and the investigators will continue the exciting trend of high risk, high reward research of molecular imaging in cancer.

Public Health Relevance

The developmental projects that we have selected will enable outstanding investigators to incorporate molecular imaging to provide new perspectives and insights into their research. These developmental projects, if successful, will provide advances in the discovery and treatment of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA103175-09
Application #
8728586
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
9
Fiscal Year
2014
Total Cost
$108,632
Indirect Cost
$39,104
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Winnard Jr, Paul T; Bharti, Santosh K; Penet, Marie-France et al. (2016) Detection of Pancreatic Cancer-Induced Cachexia Using a Fluorescent Myoblast Reporter System and Analysis of Metabolite Abundance. Cancer Res 76:1441-50
Chan, Kannie W Y; Jiang, Lu; Cheng, Menglin et al. (2016) CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR Biomed 29:806-16
Azad, Babak Behnam; Chatterjee, Samit; Lesniak, Wojciech G et al. (2016) A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts. Oncotarget 7:12344-58
Penet, Marie-France; Chen, Zhihang; Mori, Noriko et al. (2016) Magnetic Resonance Spectroscopy of siRNA-Based Cancer Therapy. Methods Mol Biol 1372:37-47
Xu, Xiang; Yadav, Nirbhay N; Zeng, Haifeng et al. (2016) Magnetization transfer contrast-suppressed imaging of amide proton transfer and relayed nuclear overhauser enhancement chemical exchange saturation transfer effects in the human brain at 7T. Magn Reson Med 75:88-96
Mascini, Nadine E; Cheng, Menglin; Jiang, Lu et al. (2016) Mass Spectrometry Imaging of the Hypoxia Marker Pimonidazole in a Breast Tumor Model. Anal Chem 88:3107-14
Chatterjee, Samit; Lesniak, Wojciech G; Gabrielson, Matthew et al. (2016) A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget 7:10215-27
Penet, Marie-France; Kakkad, Samata; Pathak, Arvind P et al. (2016) Structure and Function of a Prostate Cancer Dissemination Permissive Extracellular Matrix. Clin Cancer Res :
Lesniak, Wojciech G; Oskolkov, Nikita; Song, Xiaolei et al. (2016) Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform. Nano Lett 16:2248-53
Behnam Azad, Babak; Lisok, Ala; Chatterjee, Samit et al. (2016) Targeted Imaging of the Atypical Chemokine Receptor 3 (ACKR3/CXCR7) in Human Cancer Xenografts. J Nucl Med 57:981-8

Showing the most recent 10 out of 198 publications