The overall goal of the City of Hope Lymphoma SPORE is to develop translational studies to improve the treatment of Hodgkin and non-Hodgkin lymphoma. This application, consisting of four translational research projects and four cores, will develop novel approaches that are derived from molecular and immunologic studies in lymphoma and T-cell and antibody-based therapies. An important theme of the translational studies in this grant is to develop effective therapeutics for lymphoma that will reduce toxicities associated with current treatment regimens for Hodgkin and non-Hodgkin Lymphoma which can be utilized for treatment of older patients. Project 1 will study the effectiveness of cellular immunotherapy for B cell lymphoma utilizing engineered central memory derived CD19-specific T-cells. Investigators in this project have developed a T-cell genetic modification platform for expressing chimeric immunoreceptors that redirect antigen specificity and effector function of central memory T-cells towards cell surface epitopes on B cell lymphomas and will test the persistence and expansion of these cells after infusion. Because epidemiologic Studies indicate that stem cell damage from pretransplant therapeutic exposures may play a role in the subsequent development of myelodysplasia, Project 2 will longitudinally study a population of patients with Hodgkin and non-Hodgkin Lymphoma. The investigators will continue their studies of the cellular and molecular factors that are predictive for development of myelodysplasia, and to determine the molecular sequence of events that lead to this complication of treatment. In Project 3 investigators will test a molecularly engineered novel anti-CD20 IL-2 immunocytokine for the treatment of patients with 0020"^ lymphoma. An important component of this project will be to delineate the immunologic effector mechanisms operative in immunocytokine-mediated anti-lymphoma in vivo activity. Project 4 will develop siRNA based therapeutics against transcription factors (STATS) important in lymphoma behavior using an antibody directed cyclodextrin nanoparticle for treatment of patients with B cell lymphoma. The projects in this Lymphoma SPORE will be supported by four cores including: Administration, Biostatistics and Research Informatics, Tissue Bank for Molecular and Cellular Studies, and Biological Manufacturing. This Lymphoma SPORE will also support a Developmental Research Program and a Career Development Program to foster the advancement of pilot translational research projects and young investigators focused on lymphoma.

Public Health Relevance

The overall goal of the Beckman Research Institute at City of Hope Lymphoma SPORE is to develop translational studies to improve the treatment of Hodgkin and non-Hodgkin Lymphoma. This application, consisting of four translational research projects and four cores, will develop novel approaches that are derived from molecular and immunologic studies of T-cell and antibody-based therapies.

Agency
National Institute of Health (NIH)
Type
Specialized Center (P50)
Project #
5P50CA107399-09
Application #
8731628
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Nothwehr, Steven F
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
City
Duarte
State
CA
Country
United States
Zip Code
91010
Rohr, J; Guo, S; Huo, J et al. (2016) Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia 30:1062-70
Wang, Sophia S; Deapen, Dennis; Voutsinas, Jenna et al. (2016) Breast implants and anaplastic large cell lymphomas among females in the California Teachers Study cohort. Br J Haematol 174:480-3
Zhang, Chunyan; Xin, Hong; Zhang, Wang et al. (2016) CD5 Binds to Interleukin-6 and Induces a Feed-Forward Loop with the Transcription Factor STAT3 in B Cells to Promote Cancer. Immunity 44:913-23
Beharry, Andrew A; Lacoste, Sandrine; O'Connor, Timothy R et al. (2016) Fluorescence Monitoring of the Oxidative Repair of DNA Alkylation Damage by ALKBH3, a Prostate Cancer Marker. J Am Chem Soc 138:3647-50
You, Changjun; Wang, Pengcheng; Nay, Stephanie L et al. (2016) Roles of Aag, Alkbh2, and Alkbh3 in the Repair of Carboxymethylated and Ethylated Thymidine Lesions. ACS Chem Biol 11:1332-8
Wang, Xiuli; Popplewell, Leslie L; Wagner, Jamie R et al. (2016) Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127:2980-90
Küçük, Can; Hu, Xiaozhou; Gong, Qiang et al. (2016) Diagnostic and Biological Significance of KIR Expression Profile Determined by RNA-Seq in Natural Killer/T-Cell Lymphoma. Am J Pathol 186:1435-41
Zhou, Jiehua; Rossi, John J; Shum, Ka To (2015) Methods for assembling B-cell lymphoma specific and internalizing aptamer-siRNA nanoparticles via the sticky bridge. Methods Mol Biol 1297:169-85
Mardiros, Armen; Forman, Stephen J; Budde, Lihua E (2015) T cells expressing CD123 chimeric antigen receptors for treatment of acute myeloid leukemia. Curr Opin Hematol 22:484-8
Zhang, Wang; Zhang, Chunyan; Li, Wenzhao et al. (2015) CD8+ T-cell immunosurveillance constrains lymphoid premetastatic myeloid cell accumulation. Eur J Immunol 45:71-81

Showing the most recent 10 out of 81 publications