The Goal of the Mayo SPORE in Brain Cancer Career Development Program (CDP) will continue into this next grant period - The contribution of knowledgeable and well-trained scientists experienced in multidisciplinary research in, and informed of the public health importance of, primary brain tumors. The premise of this program is that such scientists will advance and significantly impact the nation's brain tumor agenda. The primary objective of the Program is to train young investigators in translational, multidisciplinary brain tumor research. To meet these objectives, the SPORE CDP will have the following components: (1) A stringent candidate selection system;(2) Comprehensive guidance by a scientific group comprised of investigators with expertise in the relevant area of interest and extensive experience as research mentors; and, (3) Prescribed training and education;and, (4) Collaboration with investigators within this SPORE, and with investigators within the other Mayo SPOREs. The CDP builds on its success in the first grant period amplified by Program-specific re-corrections. The CDP will be continue to be immersed in a rich cancer-, neuroscience-, and neurooncology-specific educational environment that includes CDPs of five other Mayo SPORE grants, a Cancer Center Education Portfolio, six NIH-supported cancer-focused T32 training grants, and a Clinical Translational Sciences Award (CTSA). A new Mayo Foundation Office of Research Postgraduate Affairs provides institutional infrastructure to all NIH-funded training and education enterprises including this CDP.

Public Health Relevance

The Mayo SPORE's CDP will provide for integrated training and education to new investigators committed to careers in translational research of primary brain tumors. The format is designed to provide breadth and flexibility to awardees who require additional research knowledge and skills in order to compete for independent extramural grant support and contribute to the Mayo SPORE in Brain Cancer. The CDP will continue as a research experience under the mentorship of established SPORE investigators and supported by SPORE-funded Administrative, Biostatistics, Pathology, Animal, and Clinical Cores.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA108961-08
Application #
8567086
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
8
Fiscal Year
2013
Total Cost
$87,067
Indirect Cost
$32,308
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Oi, N; Yuan, J; Malakhova, M et al. (2015) Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1. Oncogene 34:2660-71
Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N et al. (2014) Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells. Cancer Res 74:484-96
Bradley, Barrie S; Loftus, Joseph C; Mielke, Clinton J et al. (2014) Differential expression of microRNAs as predictors of glioblastoma phenotypes. BMC Bioinformatics 15:21
Walsh, Kyle M; Codd, Veryan; Smirnov, Ivan V et al. (2014) Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet 46:731-5
Bell, Michael P; Renner, Danielle N; Johnson, Aaron J et al. (2014) An elite controller of picornavirus infection targets an epitope that is resistant to immune escape. PLoS One 9:e94332
Catteau, Aurélie; Girardi, Hélène; Monville, Florence et al. (2014) A new sensitive PCR assay for one-step detection of 12 IDH1/2 mutations in glioma. Acta Neuropathol Commun 2:58
Johnson, Holly L; Jin, Fang; Pirko, Istvan et al. (2014) Theiler's murine encephalomyelitis virus as an experimental model system to study the mechanism of blood-brain barrier disruption. J Neurovirol 20:107-12
Gupta, Shiv K; Mladek, Ann C; Carlson, Brett L et al. (2014) Discordant in vitro and in vivo chemopotentiating effects of the PARP inhibitor veliparib in temozolomide-sensitive versus -resistant glioblastoma multiforme xenografts. Clin Cancer Res 20:3730-41
Assefnia, Shahin; Dakshanamurthy, Sivanesan; Guidry Auvil, Jaime M et al. (2014) Cadherin-11 in poor prognosis malignancies and rheumatoid arthritis: common target, common therapies. Oncotarget 5:1458-74
Wang, Enfeng; Zhang, Chunyang; Polavaram, Navatha et al. (2014) The role of factor inhibiting HIF (FIH-1) in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme. PLoS One 9:e86102

Showing the most recent 10 out of 103 publications