Medulloblastoma is an undifferentiated, neuroepithelial tumor of the cerebellum and the most common malignant brain tumor in children. While the current medical practice has significantly improved survival rates for children with medulloblastoma, approximately one-third of these patients die, and 20% of survivors sustain severe neurological damage. The standard of care for medulloblastoma includes surgical resection followed by radiation therapy and chemotherapy. Although larger resections that effectively remove the tumor correlate with improved patient outcome, the surgeon must attempt to minimize damage to surrounding healthy brain tissue. To improve tumor visualization and localization, we aim to adapt a dual axis confocal (DAC) microscope to detect tumor margins and guide surgical resection, and to identify new reagents that can mark the margins with novel molecular probes for clear differention of tumor from normal tissue. The DAC microscope will be modified with a GRIN relay lens to reach into the cavity ofthe resected tumor and interrogate the margins for residual cancer. The imaging reagents that are being developed will include peptides and antibodies that we will refine for use as fluorescent probes that label mouse and human medulloblastoma. These reagents are selected based on data obtained by high throughput analyses including DNA microarays and phage display, and take advantage of commercially available reagents. Binding of these markers to tumor margins will be visualized using the refined confocal microscope that is based on a dual axis design and will be modified for optimal use for surgical resection. We will develop software to identify tumor margins using the microanatomic features of cancer and normal brain after staining with vital dyes. The modifications to the microscope include those that stabilize the system and enable multispectral analyses through a disposable tip. To test the microscope in the clinic we will first use a FDA-approved dye as a contrast agent. As we develop new reagents, we will also validate their utility in image-guided resections. We will also develop image-processing algorithms to aid in the discrimination of tumors from surrounding normal brain. The research proposed here will serve as a foundation for the use of molecular probes and advanced microscopy for precision image-guided resection of solid brain tumors in humans. Successful completion of the aims to this project will have a significant benfit for children suffering from medulloblastoma by prolonging disease-free survival and reducing the neurological deficits associated with tumor resection.

Public Health Relevance

There is a clear correlation between effective tumor resection and disease-free survival in patients with medulloblastoma. However, there is a risk of severe neurological damage if normal tissue is removed. Image guidance with fine temporal and spatial resolution will improve resection and lead improved outcomes for children with medulloblastoma. The probes and instruments that we develop and refine will also have utiliity in resection of other tumor types and the approach can be extended to a greater number of patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA114747-09
Application #
8535620
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
9
Fiscal Year
2013
Total Cost
$131,578
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Natarajan, Arutselvan; Patel, Chirag B; Ramakrishnan, Sindhuja et al. (2018) A Novel Engineered Small Protein for Positron Emission Tomography Imaging of Human Programmed Death Ligand-1 : Validation in Mouse Models and Human Cancer Tissues. Clin Cancer Res :
Sun, Yao; Zeng, Xiaodong; Xiao, Yuling et al. (2018) Novel dual-function near-infrared II fluorescence and PET probe for tumor delineation and image-guided surgery. Chem Sci 9:2092-2097
Natarajan, Arutselvan; Patel, Chirag B; Habte, Frezghi et al. (2018) Dosimetry Prediction for Clinical Translation of 64Cu-Pembrolizumab ImmunoPET Targeting Human PD-1 Expression. Sci Rep 8:633
Habte, Frezghi; Natarajan, Arutselvan; Paik, David S et al. (2018) Quantification of Cerenkov Luminescence Imaging (CLI) Comparable With 3-D PET Standard Measurements. Mol Imaging 17:1536012118788637
Hong, Su Hyun; Sun, Yao; Tang, Chu et al. (2017) Chelator-Free and Biocompatible Melanin Nanoplatform with Facile-Loading Gadolinium and Copper-64 for Bioimaging. Bioconjug Chem 28:1925-1930
Shen, Bin; Behera, Deepak; James, Michelle L et al. (2017) Visualizing Nerve Injury in a Neuropathic Pain Model with [18F]FTC-146 PET/MRI. Theranostics 7:2794-2805
Loft, Mathias Dyrberg; Sun, Yao; Liu, Changhao et al. (2017) Improved positron emission tomography imaging of glioblastoma cancer using novel 68Ga-labeled peptides targeting the urokinase-type plasminogen activator receptor (uPAR). Amino Acids 49:1089-1100
Natarajan, Arutselvan; Mayer, Aaron T; Reeves, Robert E et al. (2017) Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model. Mol Imaging Biol 19:903-914
Hori, Sharon Seiko; Lutz, Amelie M; Paulmurugan, Ramasamy et al. (2017) A Model-Based Personalized Cancer Screening Strategy for Detecting Early-Stage Tumors Using Blood-Borne Biomarkers. Cancer Res 77:2570-2584
Ronald, John A; Kim, Byung-Su; Gowrishankar, Gayatri et al. (2017) A PET Imaging Strategy to Visualize Activated T Cells in Acute Graft-versus-Host Disease Elicited by Allogenic Hematopoietic Cell Transplant. Cancer Res 77:2893-2902

Showing the most recent 10 out of 424 publications