The general goal of this research is to develop positron emission tomography (PET) and magnetic resonance imaging (MRI) based molecular imaging systems to image cancer-specific enzymatic acfivity of proteases in vivo. To date the imaging of protease activity has primarily involved the development of fluorescent probes which exploit quenching and acfivation mechanisms offered by fiuorescence resonance energy transfer (FRET). Opfical imaging unfortunately has a serious limitafion, especially for clinical translation, which is the limited tissue penetrafion of light photons and high tissue autofluorescence background, hindering its ability to image deep tissues. To address this challenge, we propose a new platform for imaging protease activity in vivo. Here we outline developments to make this new platform compatible with modalities that have deep tissue penetrafion, specifically: PET and MRI. We propose to establish and validate a general platform for imaging specific protease activity in cancer cells. The platform is based on the protease activity triggered polymerization between two chemical moieties (the amino and thiol groups of cysteine and 2-cyanobenzothiazole) incorporated into a small-molecule imaging probe. This polymerization process will convert the small-molecule probe into larger molecules (or even nanoparticles) to achieve probe concentration and retention at the target site and to generate amplified readout signals. In particular, we will exploit the highly specific condensation reaction between 1,2-aminomercapto and 2-cyanobenzothlazole groups as the base mechanism for polymerization, adding other functionalities to impart specificity to different enzymes or to enhance the effectiveness of our approach. Probes for two clinical imaging modalities, PET and MRI, will be designed, prepared and evaluated. The nature of the small-molecule PET and MRI probes, combined with the amplified activation signal, should maximize the likelihood of moving these probes into the clinic. In this project, we have chosen furin as the target enzyme because of its important role as a "master switch" at different levels or stages during the process of cancer development and progression. The approach, however, should be generally applicable to other cancer- and disease-specific proteases, in particular, any endoproteases that perform C-terminal cleavage. This again may greatly improve the prospects for eventual clinical translafion of this platform technology.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA114747-10
Application #
8726921
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
10
Fiscal Year
2014
Total Cost
$148,325
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Lee, Alex G; Nechvatal, Jordan M; Shen, Bin et al. (2016) Striatal dopamine D2/3 receptor regulation by stress inoculation in squirrel monkeys. Neurobiol Stress 3:68-73
Carroll, V N; Truillet, C; Shen, B et al. (2016) [(11)C]Ascorbic and [(11)C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun (Camb) 52:4888-90
Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren et al. (2016) Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction. Radiology 280:815-25
Zhou, Zijian; Song, Jibin; Nie, Liming et al. (2016) Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 45:6597-6626
Neumann, Kiel D; Qin, Linlin; Vāvere, Amy L et al. (2016) Efficient automated syntheses of high specific activity 6-[18F]fluorodopamine using a diaryliodonium salt precursor. J Labelled Comp Radiopharm 59:30-4
Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan et al. (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986-994
Sun, Ziyan; Cheng, Kai; Wu, Fengyu et al. (2016) Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging. Nanoscale 8:19644-19653
Zhang, Ruiping; Cheng, Kai; Antaris, Alexander L et al. (2016) Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials 103:265-77
Van de Sompel, Dominique; Sasportas, Laura S; Jokerst, Jesse V et al. (2016) Comparison of Deconvolution Filters for Photoacoustic Tomography. PLoS One 11:e0152597
Li, Yulin; Deutzmann, Anja; Choi, Peter S et al. (2016) BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia. Oncotarget 7:26926-34

Showing the most recent 10 out of 404 publications