Tamoxifen (TAM) continues to be an important drug for the treatment of estrogen receptor positive (ER+) breast cancer. We have demonstrated that endoxifen, a potent metabolite resulting in part from Cytochrome P450 2D6 (CYP2D6) metabolism, is critical for TAM's antiproliferative effects. Our observation that reductions in CYP2D6 activity were associated with a higher risk of recurrence in TAM-treated breast cancer led us to focus our studies on endoxifen, providing the preliminary data for this proposal. In tumor bearing animals, endoxifen is superior to TAM. Furthermore, our in vitro data indicate that endoxifen can overcome TAM resistance associated with Human Epidermal growth factor Receptor 2 (HER2) expression because endoxifen does not stimulate ER/HER2 cross-talk as TAM does. We presented these data to NCI and they decided to proceed with endoxifen drug development, including production of clinical grade endoxifen hydrochloride and preclinical toxicology/pharmacology for IND submission. Our preliminary data indicate that the following questions should be addressed: 1) What are the metabolic pathways responsible for elimination of endoxifen, and are endoxifen-related toxicities similar to TAM (e.g. uterine stimulation)? 2) Does endoxifen have in vivo anti-tumor activity similar or greater than aromatase inhibitors (Al's) and does endoxifen exhibit anti-tumor activity in cells resistant to TAM or Al's? 3) In humans, can we identify a tolerable endoxifen dose and what is its toxicity profile? and, 4) Is this tolerable dose of endoxifen biologically relevant, as assessed by reductions in proliferation (Ki-67) and growth factor signaling in vivo, as well as clinical responses? To address these questions, we have proposed the following aims.
Aim 1 : to further characterize the pharmacokinetics, metabolism and toxicology of endoxifen;
Aim 2 : to study endoxifen antitumor activity and its effects on cell signaling in a murine xenograft model in comparison to TAM and letrozole and to describe the anti-tumor activity of endoxifen in TAM and letrozole resistant tumors;
and Aim 3 : to conduct a phase I study of endoxifen in humans to determine the maximum tolerated dose (MTD), and describe its toxicity profile. Following this determination, we will enroll additional patients to explore 2 different doses of endoxifen: a) the MTD and b) the endoxifen dose associated with steady state concentrations of 1 pM. At these doses, we will examine the impact of endoxifen on uterine thickness, frequency and severity of hot flashes, and perform paired tumor biopsies to determine endoxifen's effect on proteins important in growth factor signaling and proliferation.

Public Health Relevance

This project is based on observations that endoxifen provides superior in vivo anti-tumor activity compared to TAM and inhibits the growth of HER2 expressing, ER positive breast cancer. In summary, endoxifen could be a superior alternative hormonal therapy for the treatment of both pre- and postmenopausal breast cancer, regardless of HER2 status.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA116201-07
Application #
8555337
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
2005-09-21
Project End
2016-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
7
Fiscal Year
2012
Total Cost
$288,389
Indirect Cost
$88,747
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Qin, Sisi; Ingle, James N; Liu, Mohan et al. (2017) Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion. Breast Cancer Res 19:95
Athreya, Arjun P; Kalari, Krishna R; Cairns, Junmei et al. (2017) Model-based unsupervised learning informs metformin-induced cell-migration inhibition through an AMPK-independent mechanism in breast cancer. Oncotarget 8:27199-27215
Leon-Ferre, Roberto A; Polley, Mei-Yin; Liu, Heshan et al. (2017) Impact of histopathology, tumor-infiltrating lymphocytes, and adjuvant chemotherapy on prognosis of triple-negative breast cancer. Breast Cancer Res Treat :
Fagerholm, Rainer; Khan, Sofia; Schmidt, Marjanka K et al. (2017) TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget 8:18381-18398
Weinshilboum, Richard M; Wang, Liewei (2017) Pharmacogenomics: Precision Medicine and Drug Response. Mayo Clin Proc 92:1711-1722
Amos, Christopher I; Dennis, Joe; Wang, Zhaoming et al. (2017) The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers Prev 26:126-135
Engmann, Natalie J; Scott, Christopher G; Jensen, Matthew R et al. (2017) Longitudinal Changes in Volumetric Breast Density with Tamoxifen and Aromatase Inhibitors. Cancer Epidemiol Biomarkers Prev 26:930-937
Vierkant, Robert A; Degnim, Amy C; Radisky, Derek C et al. (2017) Mammographic breast density and risk of breast cancer in women with atypical hyperplasia: an observational cohort study from the Mayo Clinic Benign Breast Disease (BBD) cohort. BMC Cancer 17:84
Yaghjyan, Lusine; Stoll, Ethan; Ghosh, Karthik et al. (2017) Tissue-based associations of mammographic breast density with breast stem cell markers. Breast Cancer Res 19:100
Couch, Fergus J; Shimelis, Hermela; Hu, Chunling et al. (2017) Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol 3:1190-1196

Showing the most recent 10 out of 428 publications