Regulation of Hormone Resistant Breast Cancer by IGF and Insulin System Signaling Both effective and tolerable, hormonal agents such as tamoxifen and aromatase inhibitors have had a profound Impact on the treatment of estrogen receptor positive (ER"^) breast cancer in the adjuvant and metastatic setting. ER+ breast cancers represent the majority of all breast cancer. However, both primary and acquired resistance to these agents is common and developing new methods to overcome or prevent resistance would have a major impact in breast cancer. Insulin-like growth factor (IGF) signaling has been implicated as a major resistance pathway to therapies directed at the ER through the activation of two membrane receptor tyrosine kinases: 1) IGF-I receptor (IGF-IR) through binding in IGF-I and IGF-II and the 2) InsR Isoform A (InsR-A) through binding of IGF-II. We now demonstrate evidence that complete blockade of both IGF signaling receptors with a tyrosine kinase inhibitor (BMS-754807) is sufficient to reverse resistance to hormonal therapy in vivo. In contrast, IGF-IR inhibition alone did not induce regression and led to upregulation of InsR-A Isoforms. It is unclear if the metabolic isoform of the InsR (InsR-B), which binds Ins, but not IGF-I or IGF-II is important to proliferation and survival signaling in hormonal therapy resistance. This question is important, as BMS-754807 inhibits both InsR isoforms in addition to IGF-IR and may have potential metabolic liabilities of blocking the action of Ins on InsR-B. However, it is also plausible that Ins signaling blockade is important to reversal of hormone therapy resistance. Our overarching goal is to determine which IGF/Ins signaling components are necessary for this effect. We hypothesize that IGF blockade is sufficient to overcome hormonal therapy resistance in vivo in multiple models, has less potential to upregulate alternative signaling mechanisms and will be tolerable at effective doses in breast cancer patients. To test these hypotheses, we propose to: 1) optimize BMS-754807 combinations in hormonal therapy resistant models, 2) determine if Ins and/or InsR-A signaling is sufficient for IGF-IR-independent resistance to homrional therapy and 3) evaluate the efficacy of BMS-754807 and letrozole and perform correlative studies in patients with breast cancer.

Public Health Relevance

Resistance to hormonal therapies in breast cancer represents a clinically unmet need. Should IGF/Ins blockade enhance the activity of hormonal therapies and reverse or prevent the acquisition of resistance, this could have a major impact. Possible outcomes include co-IGF/hormonal blockade Increasing survival in metastatic breast cancer and increasing the rate of cure in the adjuvant setting.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
(2015) Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Hum Mol Genet 24:285-98
Yee, Douglas (2015) A tale of two receptors: insulin and insulin-like growth factor signaling in cancer. Clin Cancer Res 21:667-9
Ingle, James N; Kalari, Krishna R; Buzdar, Aman U et al. (2015) Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids 99:32-8
Kiiski, Johanna I; Pelttari, Liisa M; Khan, Sofia et al. (2014) Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proc Natl Acad Sci U S A 111:15172-7
Whiley, Phillip J; Parsons, Michael T; Leary, Jennifer et al. (2014) Multifactorial likelihood assessment of BRCA1 and BRCA2 missense variants confirms that BRCA1:c.122A>G(p.His41Arg) is a pathogenic mutation. PLoS One 9:e86836
Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline et al. (2014) DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet 10:e1004256
D'Assoro, A B; Liu, T; Quatraro, C et al. (2014) The mitotic kinase Aurora--a promotes distant metastases by inducing epithelial-to-mesenchymal transition in ER*(+) breast cancer cells. Oncogene 33:599-610
Agarwal, D; Pineda, S; Michailidou, K et al. (2014) FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. Br J Cancer 110:1088-100
Abdel-Aal, Abu-Baker M; Lakshminarayanan, Vani; Thompson, Pamela et al. (2014) Immune and anticancer responses elicited by fully synthetic aberrantly glycosylated MUC1 tripartite vaccines modified by a TLR2 or TLR9 agonist. Chembiochem 15:1508-13
Joshi, Poorval M; Sutor, Shari L; Huntoon, Catherine J et al. (2014) Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J Biol Chem 289:9247-53

Showing the most recent 10 out of 202 publications