Project 2: Multiple Antigen-Engineered DC Immunization and IFNa Boost for Metastatic Melanoma This application will build on progress made in our previous tumor antigen targeting trials to test a new genetically engineered dendritic cell-based vaccine regimen designed to more potently activate CDS and CD4 T cells specific to multiple melanoma antigens. We will couple this vaccine trial with thorough immunological monitoring to study T cell responses to the vaccine and the importance of determinant spreading for clinical response. We hypothesize that vaccination with multiple full length tumor antigens will activate a broad range of CD4 and CDS T cells, and that in the subset of patients who further activate and diversify their T cell response to include other antigens expressed by their tumor (or undergo """"""""determinant spreading""""""""), objective clinical response will be observed. We also hypothesize that systemic IFNa delivered after the vaccine will boost the vaccine-specific T cell responses. A.
Specific Aims : A.1. Conduct an Antigen-Engineered DC Trial with an IFNa Boost. We will treat 30 subjects with antigen engineered DC and randomize half to receive an IFNa boost. A.2.Assess the Biology of the CDS and CD4 Immune Responses to Immunizing Antigens MART-1, Tyrosinase and MAGE-A6. We will follow CDS and CD4 T cell responses to the three immunizing antigens, as well as the adenovirus vector. We will also investigate TIL responses to the immunizing antigens and tumor antigen expression in accessible tumor deposits. A.3. Assess Determinant Spreading. We will also follow the CDS and CD4 T cell responses to defined melanoma-associated antigens not included in the vaccine but commonly expressed by tumors (including gplOO) and uncharacterized antigens expressed by autologous tumor to determine the importance of determinant spreading to objective clinical response.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Retseck, Janet; VanderWeele, Robert; Lin, Hui-Min et al. (2016) Phenotypic and functional testing of circulating regulatory T cells in advanced melanoma patients treated with neoadjuvant ipilimumab. J Immunother Cancer 4:38
Scharping, Nicole E; Menk, Ashley V; Moreci, Rebecca S et al. (2016) The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity 45:374-88
Villalona-Calero, Miguel A; Duan, Wenrui; Zhao, Weiqiang et al. (2016) Veliparib Alone or in Combination with Mitomycin C in Patients with Solid Tumors With Functional Deficiency in Homologous Recombination Repair. J Natl Cancer Inst 108:
Bengsch, Bertram; Johnson, Andy L; Kurachi, Makoto et al. (2016) Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8(+) T Cell Exhaustion. Immunity 45:358-73
Sottile, Rosa; Pangigadde, Pradeepa N; Tan, Thomas et al. (2016) HLA class I downregulation is associated with enhanced NK-cell killing of melanoma cells with acquired drug resistance to BRAF inhibitors. Eur J Immunol 46:409-19
Fan, Yiping; Lee, Seungjae; Wu, Gang et al. (2016) Telomerase Expression by Aberrant Methylation of the TERT Promoter in Melanoma Arising in Giant Congenital Nevi. J Invest Dermatol 136:339-42
Davar, Diwakar; Kirkwood, John M (2016) Adjuvant Therapy of Melanoma. Cancer Treat Res 167:181-208
Butterfield, Lisa H (2016) Lessons learned from cancer vaccine trials and target antigen choice. Cancer Immunol Immunother 65:805-12
Zarour, Hassane M (2016) Reversing T-cell Dysfunction and Exhaustion in Cancer. Clin Cancer Res 22:1856-64
Blackler, Ryan J; Evans, Dylan W; Smith, David F et al. (2016) Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†. Glycobiology 26:181-92

Showing the most recent 10 out of 162 publications