Patients with non-Hodgkin lymphoma (NHL) or chronic lymphocytic leukemia (CLL) respond well to chimeric antigen receptor (CAR)-redirected T cells specific for the CD19 antigen and encoding costimulatory endodomains. Despite encouraging recent reports of therapeutic efficacy, this approach does not distinguish between normal and malignant B cells, setting the stage for profound B cell depletion, hypogammaglobulinemia and perhaps other delayed toxic effects due to the persistence of activated T cells. To circumvent this obstacle without substantial loss of antitumor potency, we are testing in a phase 1 clinical trial (Aim 1) of Project 2, CAR-modified T cells that recognize the Ig kappa light chain of malignant B cells The central hypothesis is that such therapy will eradicate kappa-positive NHL and CLL cells while sparing normal B cells that express the nontargeted light chain, thus preserving B cell function at a critical time in the patient's clinical course. To reduce the likelihood of suboptimal cell killing due to varying levels or a complete loss of tumor antigen expression, we have chosen CD23 - which is independently expressed by CLL cells - as a second target antigen. This modification could boost the tumor cell kill achieved with T cells that recognize kappa light chain, a prediction we intend to test in a preclinical model (Aim 2). In an additional model we plan to add selected immunomodulatory drugs to the T cell regimen to subvert the immune-inhibitory tumor micro-environment, overcoming tumor-associated neoangiogenesis, Treg cell recruitment and inhibitory immune.cytokines (Aim 3), all of which continue to impede the development of effective T cell immunotherapy. Better control of tumor cell evasion tactics is expected to enhance antitumor effects beyond those typically seen with use of CAR-modified T cells alone. The information gained from the clinical evaluation in Aim 1, together with the preclinical studies in Aims 2 and 3, should inform the design of

Public Health Relevance

Engineering the T cell arm of the immune system to eliminate tumor cells has already shown great promise for the development of effective and clinically feasible cancer treatments. The T cell immunotherapy proposed here should more readily destroy lymphoma and chronic leukemia cells without eliminating excessive numbers of normal B cells, thus adding an important new weapon to the growing arsenal of cellular therapies becoming available to combat human cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA126752-06
Application #
8339658
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
6
Fiscal Year
2012
Total Cost
$234,380
Indirect Cost
$72,324
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Morita, Daisuke; Nishio, Nobuhiro; Saito, Shoji et al. (2018) Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. Mol Ther Methods Clin Dev 8:131-140
Bollard, Catherine M; Tripic, Tamara; Cruz, Conrad Russell et al. (2018) Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. J Clin Oncol 36:1128-1139
Lyon, Deborah; Lapteva, Natasha; Gee, Adrian P (2018) Absence of Replication-Competent Retrovirus in Vectors, T Cell Products, and Patient Follow-Up Samples. Mol Ther 26:6-7
Su, Jianzhong; Huang, Yung-Hsin; Cui, Xiaodong et al. (2018) Homeobox oncogene activation by pan-cancer DNA hypermethylation. Genome Biol 19:108
Nabekura, Tsukasa; Chen, Zhiying; Schroeder, Casey et al. (2018) Crk Adaptor Proteins Regulate NK Cell Expansion and Differentiation during Mouse Cytomegalovirus Infection. J Immunol 200:3420-3428
Shum, Thomas; Kruse, Robert L; Rooney, Cliona M (2018) Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opin Biol Ther 18:653-664
Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey et al. (2018) CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 6:34
McLaughlin, Lauren P; Rouce, Rayne; Gottschalk, Stephen et al. (2018) EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 132:2351-2361
McClain, Kenneth L; Picarsic, Jennifer; Chakraborty, Rikhia et al. (2018) CNS Langerhans cell histiocytosis: Common hematopoietic origin for LCH-associated neurodegeneration and mass lesions. Cancer 124:2607-2620
Gomes-Silva, Diogo; Ramos, Carlos A (2018) Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol J 13:

Showing the most recent 10 out of 270 publications