The objective of The University of Texas M. D. Anderson Cancer Center (UTMDACC) SPORE in Brain Cancer is to develop a robust translational research program with an emphasis on innovative treatments based on combinations of agents, molecularly-based diagnosis, and therapy monitoring, through which significant impact on the care of patients with malignant brain tumors will be achieved. UTMDACC has established the elimination of brain tumors as a priority and has made significant investments in this goal through establishment of a Brain Tumor Center and a Multidisciplinary Research Program to support training and research across several departmental boundaries, including neuro-oncology, neuro-surgery, neuro-pathology, diagnostic imaging, radiation oncology, epidemiology, molecular therapeutics, molecular genetics, molecular biology, pediatrics, and statistics. With this support, we have successfully organized an efficient and productive infrastructure that forms the basis for this SPORE. The translational research in this application is based on recent insights into the molecular basis of brain tumors and aims to translate these findings into innovative approaches to improve molecular diagnosis so that patients receive the therapy most likely to be benefit them, permit early evaluation of response to targeted treatment, and establish new and effective treatments based on oncolytic viruses and small molecule signal transduction inhibitors. The focus of the four Projects is described below: Project 1: Test a targeted oncolytic adenovirus, Delta-24-RGD in the clinic, and improve it by combining it with temozolomide and by delivery with mesenchymal stem cells. Project 2: Test PI3K inhibitor PX-866 in the clinic and develop rational combination therapies based on it. Project 3: Develop a molecular biomarker panel capable of identifying patients not likely to benefit from standard therapy, test it in the RTOG-0525 clinical trial with over 800 patients, and identify novel targets in the treatment of resistant tumors to support new therapy development. Project 4: Explore genetic predictors of neurocognitive and clinical outcome in glioblastoma patients. Five Cores (Administrative, Pathology and Tissue Procurement, Biostatistics, Clinical and Animal) will support the Projects, Career Development Program, and Developmental Research Program. It is imperative that we aggressively undertake translational research, as is embodied in this proposal to develop more effective approaches for patients with brain cancer;there are no effective treatment approaches for this patient population, and this SPORE guarantees that all of the resources of the UTMDACC Brain Tumor Research Program, as well as the considerable resources of the entire institution, will be brought to bear on this important public health problem.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I (J1))
Program Officer
Arnold, Julia T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Other Domestic Higher Education
United States
Zip Code
Gressot, Loyola V; Doucette, Tiffany A; Yang, Yuhui et al. (2015) Signal transducer and activator of transcription 5b drives malignant progression in a PDGFB-dependent proneural glioma model by suppressing apoptosis. Int J Cancer 136:2047-54
Chen, James C; Alvarez, Mariano J; Talos, Flaminia et al. (2014) Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 159:402-14
Schrand, Brett; Berezhnoy, Alexey; Brenneman, Randall et al. (2014) Targeting 4-1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy. Cancer Immunol Res 2:867-77
Lang, Frederick F; Barker 2nd, Fred G (2014) A history of the AANS/CNS Section on Tumors Biennial Satellite Symposium. J Neurooncol 119:593-600
Olar, Adriana; Aldape, Kenneth D (2014) Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 232:165-77
Singh, Mamata; Leasure, Justin M; Chronowski, Christopher et al. (2014) FANCD2 is a potential therapeutic target and biomarker in alveolar rhabdomyosarcoma harboring the PAX3-FOXO1 fusion gene. Clin Cancer Res 20:3884-95
Congdon, Kendra L; Gedeon, Patrick C; Suryadevara, Carter M et al. (2014) Epidermal growth factor receptor and variant III targeted immunotherapy. Neuro Oncol 16 Suppl 8:viii20-5
Conrad, Charles A; Fueyo, Juan; Gomez-Manzano, Candelaria (2014) Intratumoral heterogeneity and intraclonal plasticity: from warburg to oxygen and back again. Neuro Oncol 16:1025-6
Zhao, Jun; Wallace, Michael; Melancon, Marites P (2014) Cancer theranostics with gold nanoshells. Nanomedicine (Lond) 9:2041-57
Jiang, Hong; Clise-Dwyer, Karen; Ruisaard, Kathryn E et al. (2014) Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model. PLoS One 9:e97407

Showing the most recent 10 out of 70 publications