The specific objectives of the Pathology and Tissue Procurement Core are to: Objective 1 Maintain and enhance a repository of tumor tissue and matched blood specimens from patients with central nervous system (CNS) tumors receiving care at The University of Texas M. D. Anderson Cancer Center (UTMDACC). Objective 2 Provide comprehensive histologic characterization of tissue samples used in the SPORE Projects, including specimens from patients and experimental tumors in animals; expeditiously distribute tissue specimens to SPORE investigators for analysis;and provide expertise in the interpretation of studies performed on tissue sections within the SPORE Projects. Objective 3 Offer centralized services, including immunohistochemical characterization of biomarkers, tissue array design and construction, and primary culture of tumor samples where appropriate. Objective 4 Support a comprehensive, prospective interactive database with detailed clinical and pathologic data for patients with CNS tumors receiving care or evaluation at UTMDACC. Objective 5 Facilitate inter-SPORE collaborations through sharing of tissue resources.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA127001-05
Application #
8380397
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
5
Fiscal Year
2012
Total Cost
$179,020
Indirect Cost
$56,549
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Zinn, Pascal O; Singh, Sanjay K; Kotrotsou, Aikaterini et al. (2018) A Coclinical Radiogenomic Validation Study: Conserved Magnetic Resonance Radiomic Appearance of Periostin-Expressing Glioblastoma in Patients and Xenograft Models. Clin Cancer Res 24:6288-6299
Shah, Maitri Y; Ferracin, Manuela; Pileczki, Valentina et al. (2018) Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res 28:432-447
Mostovenko, Ekaterina; Végvári, Ákos; Rezeli, Melinda et al. (2018) Large Scale Identification of Variant Proteins in Glioma Stem Cells. ACS Chem Neurosci 9:73-79
Chen, Zhihua; Morales, John E; Guerrero, Paola A et al. (2018) PTPN12/PTP-PEST Regulates Phosphorylation-Dependent Ubiquitination and Stability of Focal Adhesion Substrates in Invasive Glioblastoma Cells. Cancer Res 78:3809-3822
Wang, Yugang; Xia, Yan; Lu, Zhimin (2018) Metabolic features of cancer cells. Cancer Commun (Lond) 38:65
Noh, Hyangsoon; Zhao, Qingnan; Yan, Jun et al. (2018) Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Lett 433:176-185
Lee, Jong-Ho; Liu, Rui; Li, Jing et al. (2018) EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation. Mol Cell 70:197-210.e7
Lang, Frederick F; Conrad, Charles; Gomez-Manzano, Candelaria et al. (2018) Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J Clin Oncol 36:1419-1427
Wang, Qianghu; Hu, Baoli; Hu, Xin et al. (2018) Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 33:152
Dong, Jianwen; Park, Soon Young; Nguyen, Nghi et al. (2018) The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells. Oncotarget 9:10497-10509

Showing the most recent 10 out of 232 publications