This MD Anderson Brain Cancer SPORE renewal application builds upon the significant progress achieved in the initial funding period, including the development of novel biological (oncolytic virus, stem cells), targeted (PI3K inhibitors), and immunomodulaton (p-STAT-3 inhibition) therapeutic strategies;as well as the development of biomarkers that inform personalized care of GBM patients. In this renewal, our goal is to capitalize on these prior successes in order to dramatically improve the survival of patients with malignant gliomas. We have established a multidisciplinary, integrated, flexible, and highly translational (bench to bedside and back) research program that aims to discover and rationally test new biologic, targeted, and immunological therapies, and that seeks to develop prognostic and predictive biomarkers that inform individualized approaches to GBM treatment. To achieve our goals we propose four fully translational research projects (3 therapeutic;1 population-based), all of which incorporate tissue-based clinical trials, and are supported by five Cores: Administrative (A), Pathology and Biorepository (B), Biostatics and Bioinformatics (C), Clinical (D), and Animal (E). The Developmental Research Program (DRP) and Career Development Program (CDP) continue as successful aspects of our SPORE as they encourage novel studies and promote young investigators.
The aims of the four projects are to: Project 1: Enhance the efficacy of a novel oncolytic adenovirus, Delta-24-RGD, by combining it with temozolomide, by exploiting autophagy, and by improving delivery using bone marrow stem cells; Project 2: Explore combinatorial targeted strategies based on PISKinase inhibition by elucidating mechanisms of single-drug escape in a large collection of patient-derived glioma stem cells and tumor specimens; Project 3: Validate in phase III trials a new robust GBM prognostic classifier, the molecular-clinical prognosticator (MCP), and develop clinical diagnostics that predict response to bevacizumab an ipilimumab; Project 4: Modulate GBM induced immunosuppression using a novel p-STAT-3 inhibitor, WP1066. Through this research program and with the full support of The University of Texas M.D. Anderson Cancer Center, this SPORE will make a significant impact toward the diagnosis and treatment of patients with malignant brain tumors.

Public Health Relevance

Over the past 20 years, advances in the treatment of glioblastoma, the most common malignant brain tumor, have been only incremental. If successful, the research proposed in this Brain Cancer SPORE grant will legitimize novel, mechanistically unique therapeutic approaches and validate prognostic and predictive biomarkers, and thereby change the standards of care of patients with brain tumors.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Program Officer
Arnold, Julia T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Other Domestic Higher Education
United States
Zip Code
Gressot, Loyola V; Doucette, Tiffany A; Yang, Yuhui et al. (2015) Signal transducer and activator of transcription 5b drives malignant progression in a PDGFB-dependent proneural glioma model by suppressing apoptosis. Int J Cancer 136:2047-54
Chen, James C; Alvarez, Mariano J; Talos, Flaminia et al. (2014) Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 159:402-14
Schrand, Brett; Berezhnoy, Alexey; Brenneman, Randall et al. (2014) Targeting 4-1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy. Cancer Immunol Res 2:867-77
Lang, Frederick F; Barker 2nd, Fred G (2014) A history of the AANS/CNS Section on Tumors Biennial Satellite Symposium. J Neurooncol 119:593-600
Olar, Adriana; Aldape, Kenneth D (2014) Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 232:165-77
Singh, Mamata; Leasure, Justin M; Chronowski, Christopher et al. (2014) FANCD2 is a potential therapeutic target and biomarker in alveolar rhabdomyosarcoma harboring the PAX3-FOXO1 fusion gene. Clin Cancer Res 20:3884-95
Congdon, Kendra L; Gedeon, Patrick C; Suryadevara, Carter M et al. (2014) Epidermal growth factor receptor and variant III targeted immunotherapy. Neuro Oncol 16 Suppl 8:viii20-5
Conrad, Charles A; Fueyo, Juan; Gomez-Manzano, Candelaria (2014) Intratumoral heterogeneity and intraclonal plasticity: from warburg to oxygen and back again. Neuro Oncol 16:1025-6
Zhao, Jun; Wallace, Michael; Melancon, Marites P (2014) Cancer theranostics with gold nanoshells. Nanomedicine (Lond) 9:2041-57
Jiang, Hong; Clise-Dwyer, Karen; Ruisaard, Kathryn E et al. (2014) Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model. PLoS One 9:e97407

Showing the most recent 10 out of 70 publications