This MD Anderson Brain Cancer SPORE renewal application builds upon the significant progress achieved in the initial funding period, including the development of novel biological (oncolytic virus, stem cells), targeted (PI3K inhibitors), and immunomodulaton (p-STAT-3 inhibition) therapeutic strategies;as well as the development of biomarkers that inform personalized care of GBM patients. In this renewal, our goal is to capitalize on these prior successes in order to dramatically improve the survival of patients with malignant gliomas. We have established a multidisciplinary, integrated, flexible, and highly translational (bench to bedside and back) research program that aims to discover and rationally test new biologic, targeted, and immunological therapies, and that seeks to develop prognostic and predictive biomarkers that inform individualized approaches to GBM treatment. To achieve our goals we propose four fully translational research projects (3 therapeutic;1 population-based), all of which incorporate tissue-based clinical trials, and are supported by five Cores: Administrative (A), Pathology and Biorepository (B), Biostatics and Bioinformatics (C), Clinical (D), and Animal (E). The Developmental Research Program (DRP) and Career Development Program (CDP) continue as successful aspects of our SPORE as they encourage novel studies and promote young investigators.
The aims of the four projects are to: Project 1: Enhance the efficacy of a novel oncolytic adenovirus, Delta-24-RGD, by combining it with temozolomide, by exploiting autophagy, and by improving delivery using bone marrow stem cells; Project 2: Explore combinatorial targeted strategies based on PISKinase inhibition by elucidating mechanisms of single-drug escape in a large collection of patient-derived glioma stem cells and tumor specimens; Project 3: Validate in phase III trials a new robust GBM prognostic classifier, the molecular-clinical prognosticator (MCP), and develop clinical diagnostics that predict response to bevacizumab an ipilimumab; Project 4: Modulate GBM induced immunosuppression using a novel p-STAT-3 inhibitor, WP1066. Through this research program and with the full support of The University of Texas M.D. Anderson Cancer Center, this SPORE will make a significant impact toward the diagnosis and treatment of patients with malignant brain tumors.

Public Health Relevance

Over the past 20 years, advances in the treatment of glioblastoma, the most common malignant brain tumor, have been only incremental. If successful, the research proposed in this Brain Cancer SPORE grant will legitimize novel, mechanistically unique therapeutic approaches and validate prognostic and predictive biomarkers, and thereby change the standards of care of patients with brain tumors.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Program Officer
Arnold, Julia T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Other Domestic Higher Education
United States
Zip Code
Ji, Haitao; Lee, Jong-Ho; Wang, Yugang et al. (2016) EGFR phosphorylates FAM129B to promote Ras activation. Proc Natl Acad Sci U S A 113:644-9
Hodges, Tiffany R; Ferguson, Sherise D; Heimberger, Amy B (2016) Immunotherapy in glioblastoma: emerging options in precision medicine. CNS Oncol 5:175-86
Zhou, Aidong; Lin, Kangyu; Zhang, Sicong et al. (2016) Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol 18:954-66
Ohtsuka, Masahisa; Ling, Hui; Ivan, Cristina et al. (2016) H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer. EBioMedicine :
Shah, Maitri Y; Ferrajoli, Alessandra; Sood, Anil K et al. (2016) microRNA Therapeutics in Cancer - An Emerging Concept. EBioMedicine 12:34-42
Lee, J; Jain, R; Khalil, K et al. (2016) Texture Feature Ratios from Relative CBV Maps of Perfusion MRI Are Associated with Patient Survival in Glioblastoma. AJNR Am J Neuroradiol 37:37-43
Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun et al. (2016) Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 1:
Xue, Jianfei; Zhou, Aidong; Wu, Yamei et al. (2016) miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis. Cancer Res 76:4293-304
Chen, Yaohui; Li, Yu; Xue, Jianfei et al. (2016) Wnt-induced deubiquitination FoxM1 ensures nucleus β-catenin transactivation. EMBO J 35:668-84
Park, Soon Young; Piao, Yuji; Thomas, Craig et al. (2016) Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma. Oncotarget 7:26793-805

Showing the most recent 10 out of 176 publications