A key transcriptional factor, the signal transducer and activator of transcription (STAT) 3, drives the tumorigenic components of malignant gliomas and is commonly over expressed. Phosphorylated STATS propagates tumorigenesis, including the glioma cancer stem cell (GSC) contribution, by enhancing proliferation, angiogenesis, invasion, and immunosuppression. We have developed WP1066, a potent orally administered inhibitor of STAT3 with excellent blood-brain-barrier penetration that displays marked efficacy against established intracerebral heterogeneous gliomas in vivo. We have demonstrated that a significant mechanism of WP1066's activity is a combination of both direct anti-tumor effects and the reversal of tumor-mediated immune suppression. In this proposed study, we hypothesize that that in addition to directly inhibiting cell proliferation, angiogenesis, and stemness, targeting p-STATS with the small molecule inhibitor WP1066 results in a therapeutically significant reversal of GBM-mediated immune suppression leading to improved patient survival. To test our hypothesis, our first aim will explore whether the immunological status of the tumor might influence the response to STAT3 blockade. This will involve correlating immune responses to GBM subtypes using The Cancer Genome Atlas and then validating these findings with immunohistochemistry and immune functional assays. This premise will be formally tested in murine models and then in human patients in Specific Aim 2. Given the importance of temozolomide in the treatment of GBM patients, we will then explore the therapeutic effects and immune modulation of the combination of WP1066 and temozolomide on the GSC and within murine models, which may influence, the selected targeted patient population during later clinical trials. Moreover, we will investigate a paradigm shifting concept of whether by simply controlling tumor-mediated immune suppression, sufficient anti-tumor immunity is induced for tumor clearance. Successful completion of this project could result in a novel agent that not only could impact the survival of malignant glioma patients but would also have therapeutic application for a wide variety of other malignancies, including those that metastasis to the brain.

Public Health Relevance

DO NOT EXCEED THE SPACE PROVIDED. The development of new, effective therapies for malignant gliomas that target novel pathways associated with central nervous system malignancies is a major unmet clinical need. This proposal will test a novel, small molecular inhibitor of the signal transduction and activator of transcription, (STAT)-3 pathway, key to tumorigenesis and immune suppression, for implementation in patients with established CNS malignancies.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Figueroa, Javier; Phillips, Lynette M; Shahar, Tal et al. (2017) Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587. Cancer Res 77:5808-5819
Narang, Shivali; Kim, Donnie; Aithala, Sathvik et al. (2017) Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma. Oncotarget 8:101244-101254
Carstens, Julienne L; Correa de Sampaio, Pedro; Yang, Dalu et al. (2017) Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun 8:15095
Hu, Jingzhe; Salzillo, Travis C; Sailasuta, Napapon et al. (2017) Interrogating IDH Mutation in Brain Tumor: Magnetic Resonance and Hyperpolarization. Top Magn Reson Imaging 26:27-32
Lehrer, Michael; Bhadra, Anindya; Ravikumar, Visweswaran et al. (2017) Multiple-response regression analysis links magnetic resonance imaging features to de-regulated protein expression and pathway activity in lower grade glioma. Oncoscience 4:57-66
Koul, Dimpy; Wang, Shuzhen; Wu, Shaofang et al. (2017) Preclinical therapeutic efficacy of a novel blood-brain barrier-penetrant dual PI3K/mTOR inhibitor with preferential response in PI3K/PTEN mutant glioma. Oncotarget 8:21741-21753
Qian, Xu; Li, Xinjian; Cai, Qingsong et al. (2017) Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy. Mol Cell 65:917-931.e6
Van Roosbroeck, Katrien; Fanini, Francesca; Setoyama, Tetsuro et al. (2017) Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clin Cancer Res 23:2891-2904
Gressot, Loyola V; Doucette, Tiffany; Yang, Yuhui et al. (2017) Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget 8:12695-12704
Jiang, Hong; Rivera-Molina, Yisel; Gomez-Manzano, Candelaria et al. (2017) Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer Res 77:3894-3907

Showing the most recent 10 out of 208 publications