Pancreatic cancer (PaCa) carries a poor survival due to lack of effective drug treatment. This project will address this barrier through the development of new therapeutic strategies for drug treatment of PaCa based upon the targeting of newly identified molecules as targets for maintaining the survival of PaCa cells using emerging novel drugs. We will test these emerging drugs in human pancreatic cancer cells grown in immunosuppressed mice to demonstrate the feasibility that effective combination strategies tailored for the Smad4 wild type (WT) and mutant (MT) subgroups of PaCa, respectively, can be developed. The strategies are based upon description of a cell survival mechanism in which a pro-survival protein complex consisting of survivin and XIAP inhibits the executioner caspase enzymes that would normally kill cancer cells undergoing the stress of the cancer micro-environment. Our laboratory has found that the mutation of Smad4 leads to the overproduction of a cell surface protein called RonK that in turn generates the activation of enzymes that modify the survivin/XIAP complex to enhance its stability and thereby make the inhibition of caspases more efficient. Consequently, one arm of the strategy for the Smad4 MT subgroup (approximately 50% of PaCa) will be the inhibition of the Met family tyrosine kinase receptor RonK by a newly developed monoclonal antibody from Imclone (IMC-Ron8). Treatment will be coupled with YM155, a first-in-its-class inhibitor of survivin, which has been shown to disrupt the stabilization of survivin/XIAP complexes that then permits the function of caspases in generating cell death. The second subgroup is Smad4 WT, which represents the other half of the disease, will be addressed by a strategy that takes advantage of Smad4 function using a drug that cause re-expression of a tumor suppressor gene called TGF? receptor II. The drug, Belinostat, a histone deacetylase inhibitor reverses the epigenetic signaling pathway that stabilizes both survivin and XIAP. The Smad4 WT subgroup will also be treated in combination with YM155 to directly attack the expression of survivin. Both strategies will be tested in immunosuppressed mice using pancreatic cancer xenografts in order to learn how best to administrate these drugs to pancreatic cancer patients.

Public Health Relevance

Pancreatic cancer is known to have the highest fatality rate among the solid tumors. More than 80% of the patients died within 1 year of diagnosis. The major barrier to improving survival rates is the lack of effective drug treatments for this disease. This project will address this barrier through the development of new therapeutic strategies for drug treatment by using emerging novel drugs on newly identified molecules essential in maintaining the survival of pancreatic cancer cells.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
United States
Zip Code
Krasnoslobodtsev, Alexey V; Torres, MarĂ­a P; Kaur, Sukhwinder et al. (2015) Nano-immunoassay with improved performance for detection of cancer biomarkers. Nanomedicine 11:167-73
Kaur, Sukhwinder; Sharma, Neil; Krishn, Shiv Ram et al. (2014) MUC4-mediated regulation of acute phase protein lipocalin 2 through HER2/AKT/NF-*B signaling in pancreatic cancer. Clin Cancer Res 20:688-700
Liu, Xiang; Yi, Chunhui; Wen, Yunfei et al. (2014) Interactions between MUC1 and p120 catenin regulate dynamic features of cell adhesion, motility, and metastasis. Cancer Res 74:1609-20
Momi, Navneet; Kaur, Sukhwinder; Rachagani, Satyanarayana et al. (2014) Smoking and microRNA dysregulation: a cancerous combination. Trends Mol Med 20:36-47
Kane, Daniel P; Shcherbakova, Polina V (2014) A common cancer-associated DNA polymerase ? mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading. Cancer Res 74:1895-901
Stark, Jaime L; Mehla, Kamiya; Chaika, Nina et al. (2014) Structure and function of human DnaJ homologue subfamily a member 1 (DNAJA1) and its relationship to pancreatic cancer. Biochemistry 53:1360-72
Mehla, Kamiya; Singh, Pankaj K (2014) MUC1: a novel metabolic master regulator. Biochim Biophys Acta 1845:126-35
Mimeault, Murielle; Batra, Surinder K (2014) Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol Biomarkers Prev 23:234-54
Kaur, Sukhwinder; Momi, Navneet; Chakraborty, Subhankar et al. (2014) Altered expression of transmembrane mucins, MUC1 and MUC4, in bladder cancer: pathological implications in diagnosis. PLoS One 9:e92742
Dey, Parama; Rachagani, Satyanarayana; Vaz, Arokia P et al. (2014) PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia. Oncotarget 5:4480-91

Showing the most recent 10 out of 73 publications