Core D: Biostatistics The objectives of the Biostatistics Core are to provide collaborative support for study design, data analysis, and dissemination of results for all SPORE projects, in addition to developing novel statistical methods to handle unique analysis problems, as needed. Statistical and methodological support is critical to ensure the quality of the design, conduct, analysis, and reporting of scientific trials and studies. With related experimental design and conceptual components, some of the quality control and analytic issues will be shared among the projects. By using the shared resource of the Biostatistics Core, all SPORE projects will benefit from the experience gained in each project. The Biostatistics Core investigators have extensive and complementary experience in quantitative methods for biomedical applications, including both clinical and basic science studies. They are committed to taking a direct interest in the substantive issues being investigated, to participating in regular project and program meetings, and to providing rigorous and innovative input on all quantitative matters arising in the projects. The 5 Specific Aims of the Biostatistics Core are to: 1. Provide detailed consultation for the development of all study protocols, including clinical trials. This includes study design, defining outcome variables and important covariates, developing appropriate measures and methods to obtain the relevant data necessary to properly answer the study questions, identifying appropriate statistical methods for analysis, and performing power and sample size calculations. 2. Provide biostatistical support during the conduct of the studies. This includes a synergistic relationship with the Clinical Trials Core to provide quality control and routine report generation as well as to assist in making any decisions related to protocol changes or revisions. 3. Collaborate in the interim and final statistical analyses of the study data. This includes identifying appropriate statistical methodology, statistical programming, data analysis, assisting with the interpretation of the results of analyses, and producing final reports and graphical displays suitable for presentation and publication. 4. Develop novel statistical methods to handle unique analysis problems, as needed. 5. Collaborate in the preparation of manuscripts and presentations of the results of the studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA130805-05
Application #
8381199
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
5
Fiscal Year
2012
Total Cost
$153,137
Indirect Cost
$47,346
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Holkova, Beata; Zingone, Adriana; Kmieciak, Maciej et al. (2016) A Phase II Trial of AZD6244 (Selumetinib, ARRY-142886), an Oral MEK1/2 Inhibitor, in Relapsed/Refractory Multiple Myeloma. Clin Cancer Res 22:1067-75
Akhenblit, Paul J; Hanke, Neale T; Gill, Alexander et al. (2016) Assessing Metabolic Changes in Response to mTOR Inhibition in a Mantle Cell Lymphoma Xenograft Model Using AcidoCEST MRI. Mol Imaging 15:
Holkova, Beata; Kmieciak, Maciej; Bose, Prithviraj et al. (2016) Phase 1 trial of carfilzomib (PR-171) in combination with vorinostat (SAHA) in patients with relapsed or refractory B-cell lymphomas. Leuk Lymphoma 57:635-43
Zhou, L; Zhang, Y; Chen, S et al. (2015) A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia 29:807-18
Kiebala, Michelle; Skalska, Jolanta; Casulo, Carla et al. (2015) Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach. Exp Hematol 43:89-99
Jaramillo, Melba C; Briehl, Margaret M; Batinic-Haberle, Ines et al. (2015) Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells. Free Radic Biol Med 83:89-100
Chen, Liu Qi; Howison, Christine M; Spier, Catherine et al. (2015) Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell lymphoma cell line models. Leuk Lymphoma 56:1432-9
Kelly, Jennifer L; Salles, Gilles; Goldman, Bryan et al. (2015) Low Serum Vitamin D Levels Are Associated With Inferior Survival in Follicular Lymphoma: A Prospective Evaluation in SWOG and LYSA Studies. J Clin Oncol 33:1482-90
Chen, Shuang; Zhang, Yu; Zhou, Liang et al. (2014) A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood 124:2687-97
Lee, Kristy; Hart, Matthew R; Briehl, Margaret M et al. (2014) The copper chelator ATN-224 induces caspase-independent cell death in diffuse large B cell lymphoma. Int J Oncol 45:439-47

Showing the most recent 10 out of 112 publications