Pancreatic cancer is a deadly disease characterized by late diagnosis, aggressive invasion of sun'ounding tissues, eariy metastasis, and resistance to therapy. The molecular basis of pancreatic cancer is incompletely understood. We have recently found that the majority of human pancreatic adenocarcinomas specifically over-express the gene for Ataxia-Telangiectasia Group 0 Complemented (ATDC). The ATDC gene was initially described in association with the genetic disorder ataxia-telangiectasia (AT) but was later found not to be the gene responsible for that disorder, and it's function remained unknown. We have found that high levels of expression of endogenous ATDC confer a growth advantage of pancreatic cancer cells both in vitro and in vivo by stabilization of beta-catenin. We have also identified ATDC as a novel DNA damage response gene that confers a survival advantage to pancreatic cancer cells exposed to iradiation therapy (RT) or the chemotherapeutic drug gemcitabine which are agents used for standard care of pancreatic cancer patients. We show that ATDC traffics to the nucleus and that loss of ATDC results in radioresistant DNA synthesis and a defect in downstream cell cycle checkpoint activation signaling. In this proposal, we will investigate the molecular mechanisms by which ATDC functions in the response to the combination of ionzing gemcitabine and RT. The experiments will test the hypothesis that ATDC is an important stress response regulator in both ATM- and ATR-mediated signaling cascades. Furthermore, we will analyze the effect of targeting ATDC in combination with gemcitabine and RT as a therapeutic modality in pancreatic cancer using a xenograft mouse model and immunoliposomes canning ATDC-targeting shRNA. The results from these preclinical animal studies will be used as a guide in the development of a clinical trial where ATDC will be targeted in pancreatic cancer cells prior to standard treatment with gemcitabine and RT. We propose that ATDC is a promising novel therapeutic target for both slowing the growth of pancreatic tumors as well as making them more susceptible to treatment with the combination of gemcitabine and RT.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA130810-03
Application #
8380362
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
3
Fiscal Year
2012
Total Cost
$183,018
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Cooper, Gregory S; Markowitz, Sanford D; Chen, Zhengyi et al. (2018) Evaluation of Patients with an Apparent False Positive Stool DNA Test: The Role of Repeat Stool DNA Testing. Dig Dis Sci 63:1449-1453
Mills, Jason C; Samuelson, Linda C (2018) Past Questions and Current Understanding About Gastric Cancer. Gastroenterology 155:939-944
Dame, Michael K; Attili, Durga; McClintock, Shannon D et al. (2018) Identification, isolation and characterization of human LGR5-positive colon adenoma cells. Development 145:
Ulintz, Peter J; Greenson, Joel K; Wu, Rong et al. (2018) Lymph Node Metastases in Colon Cancer Are Polyclonal. Clin Cancer Res 24:2214-2224
Wilson, Matthew J; Sen, Ananda; Bridges, Dave et al. (2018) Higher baseline expression of the PTGS2 gene and greater decreases in total colonic fatty acid content predict greater decreases in colonic prostaglandin-E2 concentrations after dietary supplementation with ?-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 139:14-19
Stoffel, Elena M; Koeppe, Erika; Everett, Jessica et al. (2018) Germline Genetic Features of Young Individuals With Colorectal Cancer. Gastroenterology 154:897-905.e1
Parsels, Leslie A; Karnak, David; Parsels, Joshua D et al. (2018) PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors. Mol Cancer Res 16:222-232
Maust, Joel D; Frankowski-McGregor, Christy L; Bankhead 3rd, Armand et al. (2018) Cyclooxygenase-2 Influences Response to Cotargeting of MEK and CDK4/6 in a Subpopulation of Pancreatic Cancers. Mol Cancer Ther 17:2495-2506
Rho, Jung-Hyun; Ladd, Jon J; Li, Christopher I et al. (2018) Protein and glycomic plasma markers for early detection of adenoma and colon cancer. Gut 67:473-484
Cuneo, Kyle C; Mehta, Ranjit K; Kurapati, Himabindu et al. (2018) Enhancing the Radiation Response in KRAS Mutant Colorectal Cancers Using the c-Met Inhibitor Crizotinib. Transl Oncol 12:209-216

Showing the most recent 10 out of 103 publications