translational research that will meaningfully reduce the burden of ovarian cancer. A critical part of this process is to increase the quality and depth of the translational investigator base in ovarian cancer. The Career Development Program is based on the conviction that translational research can effectively proceed from the bench/population to the clinic or from the clinic to the bench/population. The ultimate objectives of the Career Development Program of the Ovarian SPORE are to identify and mentor new and developing investigators in ovarian cancer who demonstrate the clear potential to become independent translational researchers as well as attracting established scientists who wish to refocus on ovarian cancer. This will be accomplished through a rigorous review process aimed at identifying the most talented and promising candidate followed by intense effective mentoring, integration into ongoing SPORE activities and close oversight of the individual's progress. In addition to a primary mentor, awardees will have complementary mentors in clinical, basic or population sciences necessary to ensure development of a translational research career. This capitalizes on numerous strengths present within the Mayo environment. The Career Development Program will maintain close oversight over the mentoring activities and progress of the awardee. In turn, the Program will report to the Executive Committee of the Mayo Clinic Ovarian Cancer SPORE.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA136393-05
Application #
8547775
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$74,332
Indirect Cost
$27,582
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Amos, Christopher I; Dennis, Joe; Wang, Zhaoming et al. (2017) The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers Prev 26:126-135
Babic, Ana; Cramer, Daniel W; Kelemen, Linda E et al. (2017) Predictors of pretreatment CA125 at ovarian cancer diagnosis: a pooled analysis in the Ovarian Cancer Association Consortium. Cancer Causes Control 28:459-468
Li, Yunhui; Luo, Kuntian; Yin, Yujiao et al. (2017) USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response. Nat Commun 8:15752
Butler, Kristina A; Hou, Xiaonan; Becker, Marc A et al. (2017) Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts. Neoplasia 19:628-636
Wang, Chen; Armasu, Sebastian M; Kalli, Kimberly R et al. (2017) Pooled Clustering of High-Grade Serous Ovarian Cancer Gene Expression Leads to Novel Consensus Subtypes Associated with Survival and Surgical Outcomes. Clin Cancer Res 23:4077-4085
Ovarian Tumor Tissue Analysis (OTTA) Consortium (2017) Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncol 3:e173290
Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan et al. (2017) Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. Br J Cancer 116:524-535
Milne, Roger L (see original citation for additional authors) (2017) Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 49:1767-1778
Dicks, Ed; Song, Honglin; Ramus, Susan J et al. (2017) Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene. Oncotarget 8:50930-50940
Nounamo, Bernice; Liem, Jason; Cannon, Martin et al. (2017) Myxoma Virus Optimizes Cisplatin for the Treatment of Ovarian Cancer In Vitro and in a Syngeneic Murine Dissemination Model. Mol Ther Oncolytics 6:90-99

Showing the most recent 10 out of 269 publications