The translational goal of this project is to evaluate the adoptive transfer of tunnor-specific T cells derived or engineered from central memory cells to treat breast cancer. The immune system is designed to distinguish diseased from normal cells with exquisite specificity and sensitivity, and there is increasing evidence that tumor development and progression is restrained by adaptive host T cell responses to tumor-associated antigens. However, harnessing this activity to provide therapeutic benefit in breast cancer requires identifying antigens that are expressed by tumor cells and can be safely targeted, and developing methods to achieve potent and durable T cell immunity in patients. Many candidate tumor associated antigens have been discovered in breast cancer and we have focused on targeting the HER-2 oncoprotein and NY-BR-1. We have pursued the adoptive transfer of T cells specific for these antigens because this approach should allow for control ofthe specificity, function, and magnitude ofthe antitumor response, and could overcome obstacles that limit the endogenous host response, or T cell responses elicited by vaccination. The efficacy of adoptive T cell therapy in clinical trials for other human malignancies has been limited by the inability of tumor-specific effector cells that have been expanded in vitro to persist at high levels in vivo after adoptive transfer. Studies in our lab have demonstrated that the survival of adoptively transferred T cells is correlated with the differentiation state of the precursor T cell from which the T cells are derived. Effector cells isolated from central memory but not effector memory T cells provide persistent engraftment, migrate to memory T cell niches, function in vivo after adoptive transfer, and can be sustained at remarkably high levels by a short course of IL-15. This project will build on these findings and evaluate the adoptive transfer of T cells derived or engineered from central memory cells to treat breast cancer.
The specific aims are: 1. To perform a phase I trial of adoptive T cell therapy with TcM-derived HER-2/neu (HER-2)-specific T cells following in vivo priming with a HER-2 peptide vaccine in patients with advanced HER-2 breast cancer 2. To engineer CD45RO* CD62L* TCM derived effector T cells through T cell receptor (TCR) gene transfer to express a TCR that targets NY-BR-1. 3. To perform a phase I study of adoptive T cell therapy with TCR modified TCMIO target NY-BR-1 in patients with advanced NY-BR-I breast cancer

Public Health Relevance

There is evidence breast cancer is detected by the immune system, but the development of immunotherapy that improves the outcome for patients has been challenging. The proposed studies will evaluate new approaches to the immunotherapy for breast cancer in which cells of the immune system that have the capacity to survive long term, will be isolated, programmed to target and kill tumor cells and transferred back to the patient. The results of these studies will provide insights into the potential utility of adoptive T cell therapy for breast cancer, and for the broader application of this approach in human malignancy.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Berger, Carolina; Sommermeyer, Daniel; Hudecek, Michael et al. (2015) Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res 3:206-16
Stephan, Sirkka B; Taber, Alexandria M; Jileaeva, Ilona et al. (2015) Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 33:97-101
Jensen, Michael C; Riddell, Stanley R (2014) Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 257:127-44
Marcondes, A Mario; Karoopongse, Ekapun; Lesnikova, Marina et al. (2014) ?-1-Antitrypsin (AAT)-modified donor cells suppress GVHD but enhance the GVL effect: a role for mitochondrial bioenergetics. Blood 124:2881-91
Partridge, Savannah C; Stone, Karen M; Strigel, Roberta M et al. (2014) Breast DCE-MRI: influence of postcontrast timing on automated lesion kinetics assessments and discrimination of benign and malignant lesions. Acad Radiol 21:1195-203
Riddell, Stanley R; Sommermeyer, Daniel; Berger, Carolina et al. (2014) Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J 20:141-4
Kennedy, Jacob J; Abbatiello, Susan E; Kim, Kyunggon et al. (2014) Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods 11:149-55
Hudecek, Michael; Lupo-Stanghellini, Maria-Teresa; Kosasih, Paula L et al. (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19:3153-64
Sun, Jianping; Zheng, Yingye; Hsu, Li (2013) A unified mixed-effects model for rare-variant association in sequencing studies. Genet Epidemiol 37:334-44
Qu, Xiaoyu; Randhawa, Grace; Friedman, Cynthia et al. (2013) A three-marker FISH panel detects more genetic aberrations of AR, PTEN and TMPRSS2/ERG in castration-resistant or metastatic prostate cancers than in primary prostate tumors. PLoS One 8:e74671

Showing the most recent 10 out of 14 publications