The Biostatistics Core will provide essential biostatistical support to Seattle Cancer Consortium Breast SPORE investigators. The Core links study design, data collection, measurements, and analysis to the critical hypotheses and questions studied by SPORE investigators whose research involves basic sciences, epidemiology, population studies, and clinical research. The Biostatistics Core will contribute to the SPORE mission through the following specific aims: 1. Study design: Define study hypotheses, study populations, and experimental measurements to answer research questions of interest, avoid systematic bias, and ensure a high likelihood of detection of biologically meaningful effects. 2. Analysis and interpretation: Identify and implement appropriate quantitative methods to address scientific questions of interest and provide valid statistical inferences about the evidence supporting the various study hypotheses. 3. Methodological development when needed: Modify existing approaches and develop novel study designs and methods to address problems arising from SPORE projects, where appropriate statistical methods are inadequate. SPORE biostatisticians have been closely involved with the projects in the SPORE. They will continue to collaborate as co-investigators on each project to ensure that studies are well designed and appropriately analyzed and interpreted. Moreover, the Core will provide consulting services to SPORE investigators for projects under the Research Developmental Program and the Career Development Program. The Core investigators have diverse and complementary expertise, and can conduct analyses using data from a wide variety of experimental technologies. For some of these technologies, analytic methods are still evolving. Core investigators are part of Consortium biostatistical research groups that are leaders in the areas of biomarker development, computational biology, and bioinformatics. In summary, the Core is well equipped to meet the diverse needs and address the translational aims of the Breast SPORE.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Berger, Carolina; Sommermeyer, Daniel; Hudecek, Michael et al. (2015) Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res 3:206-16
Stephan, Sirkka B; Taber, Alexandria M; Jileaeva, Ilona et al. (2015) Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 33:97-101
Jensen, Michael C; Riddell, Stanley R (2014) Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 257:127-44
Marcondes, A Mario; Karoopongse, Ekapun; Lesnikova, Marina et al. (2014) ?-1-Antitrypsin (AAT)-modified donor cells suppress GVHD but enhance the GVL effect: a role for mitochondrial bioenergetics. Blood 124:2881-91
Partridge, Savannah C; Stone, Karen M; Strigel, Roberta M et al. (2014) Breast DCE-MRI: influence of postcontrast timing on automated lesion kinetics assessments and discrimination of benign and malignant lesions. Acad Radiol 21:1195-203
Riddell, Stanley R; Sommermeyer, Daniel; Berger, Carolina et al. (2014) Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J 20:141-4
Kennedy, Jacob J; Abbatiello, Susan E; Kim, Kyunggon et al. (2014) Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods 11:149-55
Hudecek, Michael; Lupo-Stanghellini, Maria-Teresa; Kosasih, Paula L et al. (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19:3153-64
Sun, Jianping; Zheng, Yingye; Hsu, Li (2013) A unified mixed-effects model for rare-variant association in sequencing studies. Genet Epidemiol 37:334-44
Qu, Xiaoyu; Randhawa, Grace; Friedman, Cynthia et al. (2013) A three-marker FISH panel detects more genetic aberrations of AR, PTEN and TMPRSS2/ERG in castration-resistant or metastatic prostate cancers than in primary prostate tumors. PLoS One 8:e74671

Showing the most recent 10 out of 14 publications