In acute myeloid (AML) and lymphoid (ALL) leukemias, the MLL gene fuses with over 50 partner genes or can be rearranged as the result of a self-fusion creating the partial tandem duplication {MLL-PJD). We discovered the MLL-PTD and have investigated the MLL-PTD role in leukemogenesis and its prognostic impact. We were the first to report that MLL-PTD occurs more frequently in cytogenetically normal (CN)- AML and in AML with +11 and was associated with adverse prognosis. Although more recently we have shown that the outcome of MLL-PTD AML patients has improved with intensive treatment, most of them die of their disease, thereby underscoring the need for novel and more """"""""personalized"""""""" treatment approaches. Interestingly, we observed MLL-PTD blasts from patients with dismal outcome often harbor additional adverse prognostic molecular markers, such as the FLT3 internal tandem duplication {FLT3 ITD) and that certain epigenetic aberrations are characteristically associated with the MLL-PTD. These data, therefore suggest that additional genetic and epigenetic """"""""hits"""""""" are necessary for development of the MLL- PTD leukemia phenotype. In support of the """"""""multiple hits"""""""" leukemogenic model, the Mil PTD as a single knocked-in defect in mice benignly alters hematopoiesis but does not induce leukemia, while it cooperates with the knocked-in Flt3 ITD defect to induce fatal AML. Reversion of epigenetic changes by hypomethylating agents and histone deacetylase inhibitors increases sensitivity of MLL PTD cells to chemotherapy. Based on these findings, therefore, we hypothesize that MLL PTD AML can be used as a model to elucidate the molecular mechanism(s) leading to multi-step leukemogenesis so that novel targeting therapies can be developed. To test our hypotheses, we collectively as a laboratory and clinical investigational team working together propose the following three aims: 1. To further characterize genetic and epigenetic mechanisms leading to MLL PTD AML using an Mil PTD/Flt3 ITD murine model;2. To design novel therapeutic approaches targeting genetic and epigenetic aberrations in MLL PTD AML;3. To perform an expanded Phase I clinical trial using a combination of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors followed by intensive chemotherapy to assess safety and efficacy in adult patients with relapsed or refractory AML, particularly in patients with the MLL PTD. Our ultimate goal is to improve outcome of MLL PTD AML patients. We anticipate, however, that some of the discoveries derived from this project will also improve our understanding and our ability to treat other subtypes of AML.

Public Health Relevance

We were the first to identify a type of acute myeloid leukemia (AML) characterized by a gene mutation called MLL PTD that is associated with short survival. We have created a mouse model of MLL PTD leukemia. We will use this model to understand the mechanisms through which MLL PTD causes leukemia and test novel therapies. Our laboratory discoveries will be rapidly moved to the clinic. Our goal is to improve the outcome of patients with MLL PTD AML, but also to extend our discoveries from to other subtypes of AML.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA140158-04
Application #
8380663
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$280,212
Indirect Cost
$63,889
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Bhatnagar, Bhavana; Eisfeld, Ann-Kathrin; Nicolet, Deedra et al. (2016) Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. Br J Haematol 175:226-236
Gao, Keliang; Huang, Xiaomeng; Chiang, Chi-Ling et al. (2016) Induced Apoptosis Investigation in Wild-type and FLT3-ITD Acute Myeloid Leukemia Cells by Nanochannel Electroporation and Single-cell qRT-PCR. Mol Ther 24:956-64
Maharry, Sophia E; Walker, Christopher J; Liyanarachchi, Sandya et al. (2016) Dissection of the Major Hematopoietic Quantitative Trait Locus in Chromosome 6q23.3 Identifies miR-3662 as a Player in Hematopoiesis and Acute Myeloid Leukemia. Cancer Discov 6:1036-51
Halley, Patrick D; Lucas, Christopher R; McWilliams, Emily M et al. (2016) Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model. Small 12:308-20
Mani, R; Yan, R; Mo, X et al. (2016) Non-immunosuppressive FTY720-derivative OSU-2S mediates reactive oxygen species-mediated cytotoxicity in canine B-cell lymphoma. Vet Comp Oncol :
Bhatnagar, B; Blachly, J S; Kohlschmidt, J et al. (2016) Clinical features and gene- and microRNA-expression patterns in adult acute leukemia patients with t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3). Leukemia 30:1586-9
Rogers, K A; Ruppert, A S; Bingman, A et al. (2016) Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia. Leukemia 30:346-50
Goyama, S; Schibler, J; Gasilina, A et al. (2016) UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia 30:728-39
Kearney, Cathal J; Lucas, Christopher R; O'Brien, Fergal J et al. (2016) DNA Origami: Folded DNA-Nanodevices That Can Direct and Interpret Cell Behavior. Adv Mater 28:5509-24
Tarighat, S S; Santhanam, R; Frankhouser, D et al. (2016) The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30:789-99

Showing the most recent 10 out of 205 publications