The primary objective of the Biomedical Informatics Core (BMIC) is to facilitate the collection, management, integration, and analysis of a complete spectrum of information types required for the efficient operation of the SPORE'S projects, pilots, and other cores. Examples of these information types include structured and semi-structured data sets resulting from: 1) experimental studies;2) biostatistical analyses;3) tissue core and administrative operations;4) shared resource services;and 5) the asynchronous collaboration of SPORE participants. We will achieve this objective using a combination biomedical informatics best practices and advanced technologies already in use or under development within The Ohio State University (OSU) Department of Biomedical Informatics (OSU-BMI) and The Ohio State University Comprehensive Cancer Center (OSU-CCC). Such technologies include: 1) the service-oriented caGrid middleware for electronic data interchange between heterogeneous biomedical data sources and analytical services;2) advanced database management systems optimized for the storage and query of rapidly evolving biomedical data sets;3) centralized ontology services and ontology-anchored knowledge discovery/management tools;4) multiple task-specific web-portal applications that support the discovery, integration, and analysis of large scale, multi-dimensional data sets;and 5) web-based collaborative team-science tools. We envision the BMIC as being the central information coordination "hub" of the SPORE. In order to achieve these objectives, the specific aims of the biomedical informatics core are to: 1) develop and support extensible database management systems for use by SPORE participants;2) enable electronic data interchange between SPORE-related data sources;3) support task-specific web portal applications that allow end users to discover, integrate, and analyze SPORE-related data sources;4) support the execution of SPORE-related clinical trials through the facilitation of access to the OSU-CCC's enterprise-grade clinical trials management system;and 5) implement and support a collaborative web portal intended to serve as a medium for both team-science and public dissemination activities.

Public Health Relevance

The Biomedical Informatics Core's (BMIC) activities as part of this SPORE will cover a wide spectrum, from the facilitation of high-throughput data analyses to the provision of tools to enable the collaboration of temporally or geographically distributed investigators. As such, the BMIC will serve as a catalyst for the rapid and efficient conduct of translational studies, with the effect of accelerating the translation and dissemination of basic science discoveries into clinical practice and ultimately public health benefits.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Niederwieser, C; Kohlschmidt, J; Volinia, S et al. (2015) Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia 29:567-75
Mani, R; Mao, Y; Frissora, F W et al. (2015) Tumor antigen ROR1 targeted drug delivery mediated selective leukemic but not normal B-cell cytotoxicity in chronic lymphocytic leukemia. Leukemia 29:346-55
Zhong, Y; El-Gamal, D; Dubovsky, J A et al. (2014) Selinexor suppresses downstream effectors of B-cell activation, proliferation and migration in chronic lymphocytic leukemia cells. Leukemia 28:1158-63
Marcucci, Guido; Yan, Pearlly; Maharry, Kati et al. (2014) Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol 32:548-56
Eisfeld, Ann-Kathrin; Schwind, Sebastian; Patel, Ravi et al. (2014) Intronic miR-3151 within BAALC drives leukemogenesis by deregulating the TP53 pathway. Sci Signal 7:ra36
Becker, H; Maharry, K; Mrózek, K et al. (2014) Prognostic gene mutations and distinct gene- and microRNA-expression signatures in acute myeloid leukemia with a sole trisomy 8. Leukemia 28:1754-8
Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati et al. (2014) SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. J Clin Invest 124:1512-24
Wang, David J; Ratnam, Nivedita M; Byrd, John C et al. (2014) NF-?B functions in tumor initiation by suppressing the surveillance of both innate and adaptive immune cells. Cell Rep 9:90-103
Dubovsky, Jason A; Flynn, Ryan; Du, Jing et al. (2014) Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. J Clin Invest 124:4867-76
Pan, Li; Woodard, John L; Lucas, David M et al. (2014) Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat Prod Rep 31:924-39

Showing the most recent 10 out of 104 publications