Genomic instability of ovarian cancer (OvCa) cells and the resulting frequent loss or reduction of HLA expression and function facilitate immune avoidance of this aggressive cancer. The goal of this Project is to develop an effective mode of immunotherapy capable of targeting both MHC-positive and MHC-negative variants of OvCa and counteracting local immune suppression, known to contribute to poor prognosis in OvCa patients. We observed that type-1-polarized DCs (?DC1s), a novel type of DCs developed by our group, effectively cross-present OvCa-related antigens and induce high numbers of MHC class l-restricted CTLs capable of recognizing defined OvCa-related antigenic epitopes. However aDC1-induced CTLs also express elevated levels of NK receptors, NKG2D- and DNAM1. Such

Public Health Relevance

We plan to develop a new immunotherapy of ovarian cancer, combining a new highly-potent autologous dendritic cells vaccine (?DC1s) with the local infusion of ex-vivo ?DC1-induced effector CD8+ T cells (CTLs) able of recognizing tumor cells both in a classical (TCR-dependent) and TCR-independent manner. We anticipate that such treatment will promote destruction of residual tumor cells in patients with advanced ovarian cancer treated with chemotherapy, independently on their ability to mutate and evade classical forms of immune recognition, preventing or delaying tumor recurrence.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA159981-01A1
Application #
8485810
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Project Start
2013-09-18
Project End
2018-06-30
Budget Start
2013-09-18
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$252,036
Indirect Cost
$41,459
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Block, Matthew S; Vierkant, Robert A; Rambau, Peter F et al. (2018) MyD88 and TLR4 Expression in Epithelial Ovarian Cancer. Mayo Clin Proc 93:307-320
Wang, Zehua; Yang, Bo; Zhang, Min et al. (2018) lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell 33:706-720.e9
Mayor, Paul C; Eng, Kevin H; Singel, Kelly L et al. (2018) Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol 141:1028-1035
Harris, Holly R; Babic, Ana; Webb, Penelope M et al. (2018) Polycystic Ovary Syndrome, Oligomenorrhea, and Risk of Ovarian Cancer Histotypes: Evidence from the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev 27:174-182
Shenoy, Gautam N; Loyall, Jenni; Berenson, Charles S et al. (2018) Sialic Acid-Dependent Inhibition of T Cells by Exosomal Ganglioside GD3 in Ovarian Tumor Microenvironments. J Immunol 201:3750-3758
Lu, Yingchang; Beeghly-Fadiel, Alicia; Wu, Lang et al. (2018) A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res 78:5419-5430
Wang, Yue; Wang, Zehua; Xu, Jieni et al. (2018) Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat Commun 9:3192
Minlikeeva, Albina N; Moysich, Kirsten B; Mayor, Paul C et al. (2018) Anthropometric characteristics and ovarian cancer risk and survival. Cancer Causes Control 29:201-212
Peres, Lauren C; Risch, Harvey; Terry, Kathryn L et al. (2018) Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int J Epidemiol 47:460-472
Szender, J Brian; Kaur, Jasmine; Clayback, Katherine et al. (2018) Breadth of Genetic Testing Selected by Patients at Risk of Hereditary Breast and Ovarian Cancer. Int J Gynecol Cancer 28:26-33

Showing the most recent 10 out of 128 publications