Immunotherapy is an attractive option to extend remission rates in ovarian cancer. The use of adoptive cell transfer (ACT) of ex vivo generated tumor-antigen specific effector/memory CD8+ T cells circumvents the regulatory environment present in ovarian cancer patients and can mediate durable immunity. However, strategies to ex vivo generate effector/memory CD8+ T cells have not been described and the application of ACT to treat ovarian tumor remains untested. Based on our reported findings and new evidence generated by using both murine and human T cells, we hypothesize that the gamma chain cytokine; IL-21 in combination with mTOR inhibitor; rapamycin, will ex vivo generate tumor-antigen specific effector/memory CD8+ T cells that enable durable immunity to ovarian cancer patients by ACT. We have designed two specific aims to test the hypothesis and generate information that can support a phase 2 trial. First, to determine the combinatorial dose of Rapamycin and IL-21 that optimally produces human WT1 specific effector/memory CD8+ T cells with high replicative potential for adoptive cellular therapy and second to evaluate in a Phase I study, the safety, in vivo persistence and anti-tumor efficacy of IL-21/ Rapamycin conditioned WT-1 specific CD8+ T cells adoptively transferred to patients with advanced ovarian cancer. The completion of this study will identify a new strategy to generate antigen-specific CD8+ T cells for effector/memory function and test their efficacy in ACT, it is likely to establish a new approach to treat ovarian cancer.

Public Health Relevance

The immune regulatory conditions limit efficacy of immune therapy in ovarian cancer. The successful use of ex vivo generated CD8+ T cells for adoptive cell transfer (ACT) therapy of various cancers have been noted, but it has never been applied to ovarian cancer patients. The use of IL-21 in combination with rapamycin is a novel method to generate effector/memory CD8+ T cells for ACT, that will harness the dual advantages of specificity and durability to establish a new paradigm for adoptive cell therapy in general and specifically for extending remission rates in ovarian cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
4P50CA159981-04
Application #
9111880
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
2019-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Wang, Yue; Wang, Zehua; Xu, Jieni et al. (2018) Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat Commun 9:3192
Minlikeeva, Albina N; Moysich, Kirsten B; Mayor, Paul C et al. (2018) Anthropometric characteristics and ovarian cancer risk and survival. Cancer Causes Control 29:201-212
Peres, Lauren C; Risch, Harvey; Terry, Kathryn L et al. (2018) Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int J Epidemiol 47:460-472
Szender, J Brian; Kaur, Jasmine; Clayback, Katherine et al. (2018) Breadth of Genetic Testing Selected by Patients at Risk of Hereditary Breast and Ovarian Cancer. Int J Gynecol Cancer 28:26-33
Tsuji, Takemasa; Yoneda, Akira; Matsuzaki, Junko et al. (2018) Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunol Res 6:594-604
Shenoy, Gautam N; Loyall, Jenni; Maguire, Orla et al. (2018) Exosomes Associated with Human Ovarian Tumors Harbor a Reversible Checkpoint of T-cell Responses. Cancer Immunol Res 6:236-247
Soh, Kah Teong; Wallace, Paul K (2018) RNA Flow Cytometry Using the Branched DNA Technique. Methods Mol Biol 1678:49-77
Liu, Gang; Mukherjee, Bhramar; Lee, Seunggeun et al. (2018) Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence. Am J Epidemiol 187:366-377
Ong, Jue-Sheng; Hwang, Liang-Dar; Cuellar-Partida, Gabriel et al. (2018) Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 47:450-459
Yang, Xi; Xia, Rui; Yue, Cuihua et al. (2018) ATF4 Regulates CD4+ T Cell Immune Responses through Metabolic Reprogramming. Cell Rep 23:1754-1766

Showing the most recent 10 out of 128 publications