Targeted therapeutics designed against specific oncogenic genomic alterations have had a large clinical impact. Recently, large-scale sequencing studies have identified recurrent, gain-of-function IDH gene mutations in a significant subset of glioblastomas, with particular enrichment in malignant gliomas of younger adults (age 18-45). The mutant enzyme catalyzes the production of the novel oncometabolite 2- hydroxyglutarate (2-HG). Increased levels of 2-HG inhibits the 2-oxoglutarate dependent dioxygenase class of enzymes in cells that impact a range of cellular functions including chromatin structure and the epigenetic control of gene expression, which are thought to promote tumorigenesis. Because 2-HG is not found at appreciable quantities in normal cells, where basal levels are cleared via 2-HG dehydrogenase, the accumulation to millimolar levels in human gliomas suggests that it could be an ideal biomarker for mutant enzyme activity. Understanding the requirements for mutant IDHI activity in existing tumors, and whether 2- HG levels can serve as a surrogate for mutant enzyme activity in patients are critical issues for the development of new targeted therapies in this disease. In preliminary studies, we and others have characterized the biological correlates and potentially actionable avenues for inducing therapeutic response in IDH mutant gliomas. In Project 3, we will use clinical material to test the hypotheses that non-invasive measurement of 2-HG levels can serve as surrogate for IDH mutant enzyme activity, and that targeting of IDH mutation and 2-HG may be a novel therapeutic strategy for malignant glioma patients. The basic scientist on this project (W Kaelin) is a Howard Hughes Investigator and molecular biologist, and the clinical investigator (DP Cahill) is a practicing neurosurgeon. Dr Kaolin's group helped define the functional metabolic consequences of IDHI mutation and 2-HG production on the epigenome of cancer cells, was the first to show that mutant IDH1 transforms human astrocytes in vitro, and was the first to demonstrate that a potential therapeutic intervention (EglN inhibition) can selectively target the abnormal biochemical environment within 1DH1 mutant tumors. Dr. Cahill's lab performed IDH stratification ofthe recent national RTOG-0525 trial in glioblastoma, and with his colleagues, has established IDHI-mutant orthotopic xenograft glioma models derived from freshly resected patient tumor samples. We believe that the successful execution of Project 3 will support the future development of clinical trials for 1DH1 mutant gliomas.

Public Health Relevance

Glioblastomas are the third leading cause of cancer-related death among middle-aged men and the fourth leading cause of death for women between 15-34 years of age. Targeting of IDHI mutations, which are early driver events that are particularly enriched in younger adult patients, affords the opportunity for a significant impact on this othenwise uniformly fatal disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA165962-01A1
Application #
8588493
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
2013-09-19
Project End
2018-07-31
Budget Start
2013-09-19
Budget End
2014-07-31
Support Year
1
Fiscal Year
2013
Total Cost
$326,224
Indirect Cost
$86,050
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Li, Ben B; Qian, Changli; Roberts, Thomas M et al. (2018) Targeted Profiling of RNA Translation. Curr Protoc Mol Biol :e71
Nowosielski, Martha; Wen, Patrick Y (2018) Imaging Criteria in Neuro-oncology. Semin Neurol 38:24-31
Li, Ben B; Qian, Changli; Gameiro, Paulo A et al. (2018) Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins. Proc Natl Acad Sci U S A 115:E9325-E9332
Khandekar, Melin J; Jain, Rakesh (2018) Smooth sailing for immunotherapy for unresectable stage III non-small cell lung cancer: the PACIFIC study. Transl Cancer Res 7:S16-S20
Zhang, Na; Chen, Jie; Ferraro, Gino B et al. (2018) Anti-VEGF treatment improves neurological function in tumors of the nervous system. Exp Neurol 299:326-333
Speranza, Maria-Carmela; Passaro, Carmela; Ricklefs, Franz et al. (2018) Preclinical investigation of combined gene-mediated cytotoxic immunotherapy and immune checkpoint blockade in glioblastoma. Neuro Oncol 20:225-235
Griveau, Amelie; Seano, Giorgio; Shelton, Samuel J et al. (2018) A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell 33:874-889.e7
Stylianopoulos, Triantafyllos; Munn, Lance L; Jain, Rakesh K (2018) Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 4:292-319
Lopes-Ramos, Camila M; Kuijjer, Marieke L; Ogino, Shuji et al. (2018) Gene Regulatory Network Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism. Cancer Res 78:5538-5547
Filbin, Mariella G; Tirosh, Itay; Hovestadt, Volker et al. (2018) Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:331-335

Showing the most recent 10 out of 84 publications