Glioblastomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority (~75%) of these tumors. Resistance to genotoxic modalities in p53-intact gliomas has been attributed to attenuation of p53 functions by other mutations within a p53 signaling axis that includes CDKN2A(p14 Arf), MDM2 and ATM. In preliminary studies, we have generated an alternative and potentially actionable resolution to the p53 paradox. Put briefly, we have shown that the gliogenic transcription factor OLIG2 suppresses p53-mediated responses to genotoxic damage in glioblastoma cells. Against this backdrop, the broad objective of studies proposed in this SPORE project is to use clinical materials to test the hypothesis that small molecule inhibitors of OLIG2 could serve as targeted therapeutics for glioblastoma - either as stand alone modalities or (more likely) as adjuvants to radiotherapy and genotoxic drugs. This hypothesis makes four testable predictions: Our first specific aim is to test the prediction that current standard of care (radiation and Temozolomide) actually enriches for OLIG2-positive cells within p53-positive glioblastomas. Our second specific aim is to test the prediction that one current class of radiosensifizing drugs - the HDAC inhibitors - actually work by suppressing OLIG2 expression in cancer patients. Our third specific aim is to test the prediction that genetic suppression of OL1G2 can sensitize p53-positive human gliomas to radiotherapy in vivo. Our fourth specific aim is to test the prediction that shRNA-mediated knockdown of genes essential to OLIG2 function (e.g. HDACs) will be synthetic lethal to irradiation in p53 positive gliomas. The basic scientist on this project (CD Stiles, PhD) is a molecular biologist and the clinical investigator (JS Loeffler) is a radiation oncologist. Dr Stiles and his students initially cloned the OLIG genes and defined their biological functions in brain development and malignant glioma. Dr Loeffier is a leader in the field of brain tumor irradiation with a special interest in glioblastomas. Together they have the skill sets required for successful completion ofthe study plan. The work they propose will be supported by dedicated SPORE core facilities for Pathology and Biostatistics. If the work described here supports the view that OLIG2 is a viable target for glioma therapeutics, clinical trials of OLIG2 antagonists (e.g. HDAC inhibitors) as an adjuvant to radiotherapy can be initiated within a five-year period of time.

Public Health Relevance

Glioblastomas are the third leading cause of cancer-related death among middle-aged men and the fourth leading cause of death for women between 15-34 years of age. In the fullness of time, the work we propose could change the standard of care for these tumors.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Program Officer
Arnold, Julia T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Taylor, Jennie W; Dietrich, Jorg; Gerstner, Elizabeth R et al. (2015) Phase 2 study of bosutinib, a Src inhibitor, in adults with recurrent glioblastoma. J Neurooncol 121:557-63
Schmit, Fabienne; Utermark, Tamara; Zhang, Sen et al. (2014) PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proc Natl Acad Sci U S A 111:6395-400
Cheng, Hailing; Liu, Pixu; Zhang, Fan et al. (2014) A genetic mouse model of invasive endometrial cancer driven by concurrent loss of Pten and Lkb1 Is highly responsive to mTOR inhibition. Cancer Res 74:15-23
Francis, Joshua M; Zhang, Cheng-Zhong; Maire, Cecile L et al. (2014) EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov 4:956-71
Sullivan, James P; Nahed, Brian V; Madden, Marissa W et al. (2014) Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov 4:1299-309
Maire, Cecile L; Ligon, Keith L (2014) Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro Oncol 16 Suppl 8:viii1-6
Wakimoto, Hiroaki; Tanaka, Shota; Curry, William T et al. (2014) Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin Cancer Res 20:2898-909