Although HER2-directed therapies are effective in the subset of breast cancers characterized by amplification of the HER2 gene (HER2+), resistance to these therapies remains an important clinical problem and the mechanisms of this resistance are not well defined. Recent data demonstrate that at least 40% of HER2+ breast cancers have activating mutations in the PI3-kinase gene (PIK3CA) or other alterations in the PI3K pathway. Furthermore, preclinical and clinical investigations, including our own, have implicated these PI3K pathway alterations as potential mediators of resistance to anti-HER2 therapy and have demonstrated that combining PI3K inhibitors with anti-HER2 agents can overcome this resistance. In Project 2, we aim to optimize the application of PI3K-directed therapies, both in novel genetically-engineered mouse (GEM) models and subsequently in a clinical trial. Since a combination of anti-HER2 therapy and PI3K inhibition will likely be ineffective for some patients due to additional mutations bypassing the HER2/PI3K pathway, we will utilize recently developed methods to study mechanisms of resistance that lie outside the PI3K pathway.
The aims of this project are to identify and overcome both PI3K-dependent and -independent mechanisms of resistance to targeted therapy of HER2+ breast cancer. Specifically we will: 1) Use GEM models to optimize PI3K-targeted treatment strategies for each subset of HER2+ breast cancer, with an emphasis on comparing pan-PI3K inhibitors with isoform specific agents, 2) Identify novel resistance mechanisms to HER2- and PI3K-targeted therapies in GEM models, and 3) Evaluate the role of PI3K inhibition in conjunction with HER2-targeted therapy in a preoperative clinical trial of patients with HER2+ breast cancer. Tumor tissue from that trial and others will be analyzed with next generation sequencing techniques in order to validate resistance mechanisms identified in Aim 2. Together these studies will strengthen our ability to overcome therapeutic resistance in HER2+ breast cancer and thereby improve outcomes for patients with this disease.

Public Health Relevance

Resistance to HER2-targeted therapy remains an important clinical problem in patients with HER2+ breast cancer. Recent preclinical and clinical data implicate alterations in the PI3-kinase pathway as a common mediator of this resistance and suggest that drugs that inhibit PI3-kinase may overcome this resistance. This Project will utilize newly developed mouse models and a highly translational clinical trial to optimize the use of PI3-kinase inhibitors in conjunction with HER2 therapies, evaluate the benefits of this combination in patients, and identify additional resistance mechanisms that may need to be overcome. Together these studies will maximize the benefits of this newly developed class of drugs for patients with HER2+ breast cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA168504-01A1
Application #
8607754
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (O1))
Project Start
2013-09-17
Project End
2018-07-31
Budget Start
2013-09-17
Budget End
2014-07-31
Support Year
1
Fiscal Year
2013
Total Cost
$270,568
Indirect Cost
$115,958
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Spangle, Jennifer M; Dreijerink, Koen M; Groner, Anna C et al. (2016) PI3K/AKT Signaling Regulates H3K4 Methylation in Breast Cancer. Cell Rep 15:2692-704
Montaser-Kouhsari, Laleh; Knoblauch, Nicholas W; Oh, Eun-Yeong et al. (2016) Image-guided Coring for Large-scale Studies in Molecular Pathology. Appl Immunohistochem Mol Morphol 24:431-5
Morganella, Sandro; Alexandrov, Ludmil B; Glodzik, Dominik et al. (2016) The topography of mutational processes in breast cancer genomes. Nat Commun 7:11383
Cheng, H; Liu, P; Ohlson, C et al. (2016) PIK3CA(H1047R)- and Her2-initiated mammary tumors escape PI3K dependency by compensatory activation of MEK-ERK signaling. Oncogene 35:2961-70
Choi, Young Eun; Meghani, Khyati; Brault, Marie-Eve et al. (2016) Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep 14:429-39
Ni, Jing; Ramkissoon, Shakti H; Xie, Shaozhen et al. (2016) Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nat Med 22:723-6
Wang, Q; Liu, P; Spangle, J M et al. (2016) PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. Oncogene 35:3607-12
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan et al. (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534:47-54
Smid, Marcel; Rodríguez-González, F Germán; Sieuwerts, Anieta M et al. (2016) Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat Commun 7:12910
Johnson, Shawn F; Cruz, Cristina; Greifenberg, Ann Katrin et al. (2016) CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep 17:2367-2381

Showing the most recent 10 out of 38 publications