The Dana-Farber/Harvard Cancer Center (DF/HCC) SPORE in Breast Cancer seeks to improve the understanding and treatment of breast cancer with an integrated, innovative, and highly translational approach. The application consists of four Projects and four Cores. Project 1 brings together strong basic- and population-science investigators. It builds upon promising clues about androgen receptor (AR) signaling and will investigate the role of signaling through the AR and the development and progression of breast cancer The investigators will develop a novel approach to characterizing AR signaling as part of this effort. Project 2 uses state-of-the-art genetically engineered mouse models and a cutting edge clinical trial to evaluate resistance mechanisms in HER2+ breast cancer. It seeks to overcome this resistance by further interrogating the PI3 kinase pathway, and will evaluate sensitivity and resistance to PI3 kinase inhibitors. Project 3 shifts current paradigms by the development of approaches that will sensitize BRCA-proficient triple negative breast cancer cells to PARP inhibition. The Project is built upon a solid background including cell lines, patien-derived orthotopic xenograft models, and early phase clinical trials. Project 4 explores a """"""""new avenue"""""""" in drug development assessing the mechanisms of action of BET/bromodomain inhibitors for the treatment of triple negative breast cancer. A strong pre-clinical phase is followed by a clinical trial with ability to understand how genomic modulation impacts the outcome of patients diagnosed with triple negative breast cancer. Each Project will contribute substantially to the understanding of the biology of breast cancer. The preclinical and clinical findings from these projects will stimulate further research and could have significant clinical impact. Our SPORE proposal uses Cores to support the Projects, as well as other researchers in the DF/HCC community. Core A is the epicenter of scientific, fiscal and administrative oversight. It will lead efforts in planning and communication. It also houses the Patient Advocacy Committee arid will oversee the Developmental Research Program (DRP) and the Career Development Program (CDP) awards. Core B, Biostatistics and Computational Biology provides specialized expertise in biostatistics and management of genomic data. Core C, Clinical Trials Core will oversee all clinical trials associated with the Breast SPORE. It will review all protocol, coordinate the activation process, monitor the conduct of clinical studies and facilitate biopsy-intensive studies in collaboration with Core D. Core D, Tissue and Pathology Core will maintain tissue/blood repositories for the SPORE Projects and, to some extent, for investigators outside of the SPORE. This Core will also provide pathology services that are critical to many of the translational research aims in Projects. The DF/HCC SPORE in Breast Cancer is comprised of a team of top-notch basic, translational, and clinical investigators who are led by an experienced and effective Program Director and Senior Leadership Team. The DF/HCC SPORE is poised to make substantial contributions over the next five years and beyond.

Public Health Relevance

The DF/HCC SPORE in Breast Cancer brings together laboratory and clinical scientists with the goal of unraveling many of the most important translational research questions in breast cancer. Four distinct Projects use innovative methods that will yield biologic insights and meaningful clinical findings. The SPORE promotes a culture a translational science that will lead to discoveries in the near-term, a new wave of scientific challenges and the development of the next generation of breast cancer investigators.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (O1))
Program Officer
Kuzmin, Igor A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Zhang, Jing; Gao, Xueliang; Schmit, Fabienne et al. (2017) CRKL Mediates p110?-Dependent PI3K Signaling in PTEN-Deficient Cancer Cells. Cell Rep 20:549-557
Heng, Yujing J; Lester, Susan C; Tse, Gary Mk et al. (2017) The molecular basis of breast cancer pathological phenotypes. J Pathol 241:375-391
Rondinelli, Beatrice; Gogola, Ewa; YĆ¼cel, Hatice et al. (2017) EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol 19:1371-1378
Breitkopf, Susanne B; Taveira, Mateus De Oliveira; Yuan, Min et al. (2017) Serial-omics of P53-/-, Brca1-/- Mouse Breast Tumor and Normal Mammary Gland. Sci Rep 7:14503
Thorpe, Lauren M; Spangle, Jennifer M; Ohlson, Carolynn E et al. (2017) PI3K-p110? mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85?. Proc Natl Acad Sci U S A 114:7095-7100
Goel, Shom; DeCristo, Molly J; Watt, April C et al. (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471-475
Simond, A M; Rao, T; Zuo, D et al. (2017) ErbB2-positive mammary tumors can escape PI3K-p110? loss through downregulation of the Pten tumor suppressor. Oncogene 36:6059-6066
Spangle, Jennifer M; Roberts, Thomas M; Zhao, Jean J (2017) The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta 1868:123-131
Liu, Hui; Murphy, Charles J; Karreth, Florian A et al. (2017) Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple Negative Breast Cancer. Cancer Discov :
Willis, Nicholas A; Frock, Richard L; Menghi, Francesca et al. (2017) Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature 551:590-595

Showing the most recent 10 out of 54 publications