The overall goal of this project is to use genetics to improve our chances of preventing, predicting, diagnosing, treating and curing papillary thyroid carcinoma (PTC), which accounts for >80% of all thyroid cancers. Thus far, traditional genetic approaches have failed to pinpoint the culpable predisposing genes. Two genome wide association studies (GWAS) identified five genetic loci associated with highly significant low penetrance predisposition with strong population impact. Two of the pinpointed SNPs reside in conventional translated genes that are pursued elsewhere. Here we focus on the three loci (one in 9q22 and two in 14q13) that are not associated with known genes. Using molecular and in silico methods we have narrowed the regions in which the culpable genomic mutations must reside. In both cases we have identified and delineated novel long intergenic noncoding RNA (lincRNA) genes. These are implicated in the genetic predisposition as shown by their dramatic loss of expression in tumor tissue. These lincRNAs genes are the focus of the first aim of this project. Much more needs to be learned about the mechanistic aspects of the lincRNAs, moreover the culpable genomic mutations must be unequivocally identified.
The second aim focuses on translational studies examining the predictive and diagnostic value of the SNPs and the culpable mutations nearby, and their possible association with other genetic/genomic changes in PTC as well as clinical factors and outcome. Our preliminary work has shown that the five available risk SNPs are additive.

Public Health Relevance

; The discovery of genes predisposing to PTC and their interaction with other genetic and clinical factors will allow for more accurate genetic counseling, genotype-based risk stratification, and prognostication. Moreover, the elucidation of the genetic pathways leading to PTC will allow therapeutic drugs and preventative strategies to be designed.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Wang, Yuliang; Jeong, Younkoo; Jhiang, Sissy M et al. (2014) Quantitative characterization of cell behaviors through cell cycle progression via automated cell tracking. PLoS One 9:e98762
Wojcicka, A; de la Chapelle, A; Jazdzewski, K (2014) MicroRNA-related sequence variations in human cancers. Hum Genet 133:463-9
Lakshmanan, Aparna; Scarberry, Daniel; Shen, Daniel H et al. (2014) Modulation of sodium iodide symporter in thyroid cancer. Horm Cancer 5:363-73