The Tissue, Pathology and Bioinformatics Core A of the Moffitt Skin SPORE will be a multifunctional core devoted to the (1) optimal procurement, handling, processing, and pathologic characterization of tissues from patients with melanoma and non-melanoma skin cancer, as well as the (2) accurate compilation, storage, and analysis of clinical, pathologic, and investigational data generated from the Skin SPORE projects. The ultimate goals of Core A are to utilize pathology and informatics expertise and resources to both support the translation of hypotheses generated by the basic science-driven projects into accurate, clinically relevant conclusions that can be generalized to the prevention and/or treatment of melanoma and non-melanoma skin cancer, and to carry out and/or support the translational assays that are included within the trials of this Skin SPORE. Core A will take advantage of and supplement institutional shared resources for tissue and blood procurement, banking, nucleic acid isolation, and histopathology services including immunohistochemstry and tissue microarray production, as well as analytic microscopy facilities for digital imaging and analysis. Pathologic review, grading, and classification of all patient tissue specimens will be conducted by Core A. Institutional information technology resources will provide researchers a centralized location to store data, access analytical tools, in a seamless application environment managed by the Core. These facilities will be leveraged by the co-leaders, who will oversee and manage acquisition, storage, and distribution of all tissues and data derived in the course of the projects.

Public Health Relevance

The Tissue, Pathology and Bioinformatics Core A of the Moffitt Skin SPORE will conduct the collection and storage of frozen tissue for lab-based translational studies (Projects 1, 2, and 3) as well as fixed tissue for molecular analyses and immunohistochemical staining/evaluation of molecular targets of interest (Projects 1, 2, 3, and 4). Core A will collect serum, hair follicle, and skin swabs for assessment of HPV and MCV infection (Project 4). The Core will storage and manage all data derived from these projects. The Core will also oversee the distribution of archived, clinically annotated biospecimens to support the Developmental Research and Career Development projects of the SPORE.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA168536-02
Application #
8754426
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$147,044
Indirect Cost
$59,777
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Freeman-Keller, Morganna; Kim, Youngchul; Cronin, Heather et al. (2016) Nivolumab in Resected and Unresectable Metastatic Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes. Clin Cancer Res 22:886-94
Pilon-Thomas, Shari; Kodumudi, Krithika N; El-Kenawi, Asmaa E et al. (2016) Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Res 76:1381-90
Smalley, Keiran S M; Fedorenko, Inna V; Kenchappa, Rajappa S et al. (2016) Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. Int J Cancer 139:1195-201
Prieto-Granada, Carlos N; Wiesner, Thomas; Messina, Jane L et al. (2016) Loss of H3K27me3 Expression Is a Highly Sensitive Marker for Sporadic and Radiation-induced MPNST. Am J Surg Pathol 40:479-89
Emmons, Michael F; Faião-Flores, Fernanda; Smalley, Keiran S M (2016) The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochem Pharmacol 122:1-9
Smalley, Keiran S M; Eroglu, Zeynep; Sondak, Vernon K (2016) Combination Therapies for Melanoma: A New Standard of Care? Am J Clin Dermatol 17:99-105
Sung, Hyeran; Kanchi, Krishna L; Wang, Xue et al. (2016) Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget 7:23885-96
Fedorenko, I V; Abel, E V; Koomen, J M et al. (2016) Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene 35:1225-35
Nemoto, Satoshi; Mailloux, Adam W; Kroeger, Jodi et al. (2016) OMIP-031: Immunologic checkpoint expression on murine effector and memory T-cell subsets. Cytometry A 89:427-9
Woan, K V; Lienlaf, M; Perez-Villaroel, P et al. (2015) Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation. Mol Oncol 9:1447-57

Showing the most recent 10 out of 33 publications