The goals of this SPORE in Thyroid Cancer are to leverage new insights on disease pathogenesis to improve the outcome of patients with thyroid cancer at all stages of presentation. Our translational research objectives are: TR01: To explore how to implement a more rational care of patients with papillary microcarcinomas (PMC), which are highly prevalent and overtreated in the community, leading to unacceptable morbidity and wasteful health care expenditures. We propose to identify genetic predictors of progression in archival specimens and through a prospective observational study of patients with PMC left in situ, which will provide evidence-based guidelines for care. TR02: To improve the effectiveness of radioiodine (RAI) therapy in patients with RAI-refractory metastatic thyroid cancer based on new insights on the role of MAPK signaling in downregulating iodine transport and incorporation into cancer cells. TR03: To identify new approaches to treat patients with life-threatening metastatic thyroid cancer, using targeted therapies designed against key drivers of the disease, and by implementing strategies to overcome adaptive resistance mechanisms triggered by blocking key oncogenic pathways. To meet these objectives, we will undertake four main projects with the following titles: RP1: Genomic predictors of PMC disease progression. RP2: Maximizing effectiveness of radioiodine therapy by inhibiting MAPK signaling. RP3: Elucidating and targeting the molecular foundations of Hurthle cell cancer. RP4: Molecular landscape-based innovative therapies for anaplastic thyroid carcinoma. Our Developmental Research Program counts with strong candidate pilot projects, which document the robust pipeline of investigators interested in this disease, and an outstanding group of scientific advisors who will help identify and select the best projects for funding. The Career Development Program will take advantage of the strong training environment in the clinical and scientific programs at our institutions to identify and promote the research and training of young investigators focused on translational research in thyroid cancer. The SPORE will be supported by three Core facilities: CFA: Biospecimen Repository. CPB: Biostatistics. CFC: Administration.

Public Health Relevance

Approximately 56,000 new patients are diagnosed with thyroid cancer in the US each year. Mortality is comparatively low but is slowly rising, and the disease continues to be a major public health challenge. The genetics of the disease make it a prime candidate for targeted therapies, which can be exploited in unique ways to improve disease outcomes.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Program Officer
Ujhazy, Peter
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Mio, Catia; Lavarone, Elisa; Conzatti, Ketty et al. (2016) MCM5 as a target of BET inhibitors in thyroid cancer cells. Endocr Relat Cancer 23:335-47
Landa, Iñigo; Ibrahimpasic, Tihana; Boucai, Laura et al. (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126:1052-66
Mandal, Rajarsi; Chan, Timothy A (2016) Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy. Cancer Discov 6:703-13
Champa, Devora; Orlacchio, Arturo; Patel, Bindi et al. (2016) Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and necrosis. Oncotarget 7:34453-71
Brito, Juan P; Ito, Yasuhiro; Miyauchi, Akira et al. (2016) A Clinical Framework to Facilitate Risk Stratification When Considering an Active Surveillance Alternative to Immediate Biopsy and Surgery in Papillary Microcarcinoma. Thyroid 26:144-9
Brown, Anna M; Nagala, Sidhartha; McLean, Mary A et al. (2016) Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magn Reson Med 75:1708-16
Vedvyas, Yogindra; Shevlin, Enda; Zaman, Marjan et al. (2016) Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight 1:e90064
Garcia-Rendueles, Maria E R; Ricarte-Filho, Julio C; Untch, Brian R et al. (2015) NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition. Cancer Discov 5:1178-93
Dunn, Lara; Fagin, James A (2015) Therapy: Lenvatinib and radioiodine-refractory thyroid cancers. Nat Rev Endocrinol 11:325-7
Wiesner, Thomas; Lee, William; Obenauf, Anna C et al. (2015) Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 526:453-7

Showing the most recent 10 out of 14 publications