Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer. Despite a relatively low prevalence, it accounts for a disproportionate number of deaths, due to its resistance to any therapeutic approach. The vast majority of ATCs is associated with oncogenic mutations of BRAF or alterations of members of the PISK signaling pathway, and has a very high frequency of TP53 mutations. Based on these genetic data, our group and Dr. Fagin's group have developed two clinically relevant mouse models of ATC by combining thyroid-targeted Tp53 loss with homozygous deletion of Pten or expression of oncogenic Braf. These mice develop with very high penetrance ATCs that display all the features of their human counterpart, including high mitotic index, pleomorphism, epithelial-mesenchymal transition, aneupioidy, local invasion, and distant metastases. The analysis of these novel models has revealed that i) several groups of genes encoding components of major signaling pathways, including mitotic kinases, are markedly overexpressed in mouse ATCs independent of their driver oncogenic alteration, and ii) despite their genetic instability, these tumors are still remarkably sensitive to the inhibition of their oncogenic driver pathway. We propose to extend these studies 1) to validate our findings in a large set of genetically annotated human anaplastic thyroid tumors, 2) to establish whether mouse and human ATCs are sensitive to mitotic kinases inhibition, and 3) to assess the ability of pharmacologic inhibitors ofthe driver oncogenic pathways to increase the efficacy of cytotoxic chemotherapy by blocking critical signaling pathways that contribute to ATC resistance to these drugs. These studies will lay the foundation for new clinical trials for ATC to be carried out during the next project period.

Public Health Relevance

Despite their relative rarity, ATCs account for a major fraction of the mortality from thyroid cancer. Medical therapy has been mostly ineffective. This application proposes to leverage novel knowledge gained from relevant in vivo models to design and test Innovative therapeutic approaches to this otherwise deadly cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA172012-01A1
Application #
8738872
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Project Start
2014-09-19
Project End
2019-08-31
Budget Start
2014-09-19
Budget End
2015-08-31
Support Year
1
Fiscal Year
2014
Total Cost
$531,224
Indirect Cost
$192,495
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Ibrahimpasic, Tihana; Xu, Bin; Landa, IƱigo et al. (2017) Genomic Alterations in Fatal Forms of Non-Anaplastic Thyroid Cancer: Identification of MED12 and RBM10 as Novel Thyroid Cancer Genes Associated with Tumor Virulence. Clin Cancer Res 23:5970-5980
Orlacchio, Arturo; Ranieri, Michela; Brave, Martina et al. (2017) SGK1 Is a Critical Component of an AKT-Independent Pathway Essential for PI3K-Mediated Tumor Development and Maintenance. Cancer Res 77:6914-6926
Montero-Conde, Cristina; Leandro-Garcia, Luis J; Chen, Xu et al. (2017) Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene. Proc Natl Acad Sci U S A 114:E4951-E4960
Park, Spencer; Shevlin, Enda; Vedvyas, Yogindra et al. (2017) Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep 7:14366
Min, Irene M; Shevlin, Enda; Vedvyas, Yogindra et al. (2017) CAR T Therapy Targeting ICAM-1 Eliminates Advanced Human Thyroid Tumors. Clin Cancer Res 23:7569-7583
Sherman, Eric J; Dunn, Lara A; Ho, Alan L et al. (2017) Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer 123:4114-4121
Di Cristofano, Antonio (2017) SGK1: The Dark Side of PI3K Signaling. Curr Top Dev Biol 123:49-71
Anelli, Viviana; Villefranc, Jacques A; Chhangawala, Sagar et al. (2017) Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. Elife 6:
Brito, Juan P; Ito, Yasuhiro; Miyauchi, Akira et al. (2016) A Clinical Framework to Facilitate Risk Stratification When Considering an Active Surveillance Alternative to Immediate Biopsy and Surgery in Papillary Microcarcinoma. Thyroid 26:144-9
Mandal, Rajarsi; Chan, Timothy A (2016) Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy. Cancer Discov 6:703-13

Showing the most recent 10 out of 29 publications