Despite recent therapeutic advances in advanced melanoma, Stage IV melanoma remains an incurable disease with poor survival. New targets for melanoma therapy must be fully explored to lengthen survival in Stage IV patients and possibly improve cure rates in early stage patients. Autophagy, the process by which cells dispose of damaged organelles and recycle nutrients to fuel further growth, has been identified as a tumor survival mechanism. It appears to play a particularly important role in melanoma cell survival and is a promising new target in melanoma therapy. We have developed a number of clinical trials assessing the safety and preliminary activity of the first generation autophagy inhibitor hydroxychloroquine (HCQ) in combination with other anticancer drugs that induce autophagy in many malignancies. The most promising results so far were in a phase I trial of the mTOR inhibitor temsirolimus and HCQ in patients with advanced melanoma. While preliminary results show some promising antitumor activity, incorporating effective autophagy inhibitors into treatment of melanoma patients is limited by 3 factors: a) tools to monitor autophagy modulation in patients are limited b) the mechanisms of resistance to autophagy inhibition have not been identified, and c) novel, more potent second generation autophagy modulators need to be developed and tested. Using powerful proteomics techniques paired with novel autophagy modulators, patient derived xenograft models and clinical trials, we will test the hypothesis that autophagy inhibition can significantly improve the antitumor activity of PI3K/mTOR inhibitors in melanoma. To test this hypothesis and address the shortcomings listed above, thereby moving the field forward, we propose the following specific aims:
Aim 1. Identify tumor-secreted protein pharmacodynamic markers (PD) of autophagy modulation and identify signaling pathways associated with acquired resistance to first generation mTOR and autophagy inhibitors.
Aim 2. Determine autophagy modulation and anti-melanoma activity of the combination of a PI3K/mTOR inhibitor and a second generation autophagy inhibitor. Upon completion of this project we expect to establish novel pharmacodynamic markers and markers of resistance to autophagy modulation. We also expect to determine the comparative efficacy of second generation versus first generation autophagy inhibitors. Our studies will provide the tools and knowledge to develop targeted therapy combinations involving mTOR and autophagy inhibitors that could significantly improve the survival of melanoma patients. The knowledge gained would expedite the development of autophagy modulators, which represent a new class of drugs that have the potential to improve survival and cure rates in melanoma patients.

Public Health Relevance

Better therapies are needed for advanced melanoma. Autophagy inhibition could significantly improve survival and cure rates for patients with melanoma and other cancers, but additional tools to measure autophagy in patients, and more potent autophagy inhibitors are needed before this can happen. This proposal outlines translational studies that will address these unmet needs providing a new therapeutic approach for patients with limited therapeutic options.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA174523-01A1
Application #
8664621
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
Project End
Budget Start
2014-09-15
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$320,283
Indirect Cost
$94,925
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Kaur, Amanpreet; Webster, Marie R; Marchbank, Katie et al. (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:250-4
Lu, Hezhe; Liu, Shujing; Zhang, Gao et al. (2016) Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Rep 15:2012-24
Amaravadi, Ravi; Kimmelman, Alec C; White, Eileen (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913-30
Fatkhutdinov, Nail; Sproesser, Katrin; Krepler, Clemens et al. (2016) Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Mol Cancer Res 14:767-75
Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas et al. (2016) CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity 44:303-15
Shannan, Batool; Chen, Quan; Watters, Andrea et al. (2016) Enhancing the evaluation of PI3K inhibitors through 3D melanoma models. Pigment Cell Melanoma Res 29:317-28
Gimotty, Phyllis A; Shore, Ronald; Lozon, Nancy L et al. (2016) Miscoding of Melanoma Thickness in SEER: Research and Clinical Implications. J Invest Dermatol 136:2168-2172
Natale, Christopher A; Duperret, Elizabeth K; Zhang, Junqian et al. (2016) Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors. Elife 5:
Krepler, Clemens; Xiao, Min; Sproesser, Katrin et al. (2016) Personalized Preclinical Trials in BRAF Inhibitor-Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies. Clin Cancer Res 22:1592-602
Wang, Joshua X; Fukunaga-Kalabis, Mizuho; Herlyn, Meenhard (2016) Crosstalk in skin: melanocytes, keratinocytes, stem cells, and melanoma. J Cell Commun Signal 10:191-196

Showing the most recent 10 out of 35 publications