Core A is designed to provide scientific leadership, effective communication and an administrative support structure to ensure the coordination of all SPORE activities. The essential services provided by the Core include: administrative support for all of the investigators in each project and core;scientific oversight and progress review for each project;coordination of selection processes for the Developmental Research and Career Development Programs and streamlining of these investigators and their projects into full SPORE projects as they evolve;fiscal and financial management and oversight for all components of the SPORE;and organization and communication of all SPORE meetings and activities. The overall objectives of the Administrative Core are to: 1. Establish and maintain an administrative structure to provide support for and management of all SPORE activities. 2. Foster an environment to maximize collaborative and translational research among SPORE investigators between Wistar and Penn and between other SPORE and NCI initiatives. 3. Ensure compliance with all institutional, governmental and NCI regulations and policies.

Public Health Relevance

Effective administrative management of this SPORE in Skin Cancer is essential for it to successfully achieve its overall goal of improved treatment and quality of life for patients with cancers of the skin.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA174523-01A1
Application #
8664624
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
Project End
Budget Start
2014-09-15
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$211,507
Indirect Cost
$96,261
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Vitiello, Marianna; Tuccoli, Andrea; D'Aurizio, Romina et al. (2017) Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget 8:25395-25417
Krepler, Clemens; Sproesser, Katrin; Brafford, Patricia et al. (2017) A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. Cell Rep 21:1953-1967
Yang, Lu; Zhang, Youyou; Shan, Weiwei et al. (2017) Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med 9:
Huang, Alexander C; Postow, Michael A; Orlowski, Robert J et al. (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545:60-65
Hu, Xiaowen; Sood, Anil K; Dang, Chi V et al. (2017) The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 48:8-15
Somasundaram, Rajasekharan; Zhang, Gao; Fukunaga-Kalabis, Mizuho et al. (2017) Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 8:607
Rebecca, Vito W; Nicastri, Michael C; McLaughlin, Noel et al. (2017) A Unified Approach to Targeting the Lysosome's Degradative and Growth Signaling Roles. Cancer Discov 7:1266-1283
Piao, Shengfu; Ojha, Rani; Rebecca, Vito W et al. (2017) ALDH1A1 and HLTF modulate the activity of lysosomal autophagy inhibitors in cancer cells. Autophagy 13:2056-2071
Zhang, Dongmei; Zhang, Gao; Hu, Xiaowen et al. (2017) Oncogenic RAS Regulates Long Noncoding RNA Orilnc1 in Human Cancer. Cancer Res 77:3745-3757
Behera, Reeti; Kaur, Amanpreet; Webster, Marie R et al. (2017) Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clin Cancer Res 23:3181-3190

Showing the most recent 10 out of 59 publications