Translational research, adapting new laboratory findings quickly to improve prevention, quality of life, and survival for breast cancer patients, hs been the focus of the team now forming the Baylor Breast Center for over 30 years. In the early years of our previous SPORE, our tumor bank which made much of this rapid translation possible became a national resource, while basic cell and molecular biology research suggested new clinical implications for endocrine and chemotherapy resistance, breast cancer prevention, metastasis, and development of premalignant lesions. Developmental projects ranged even further in seeking new translational possibilities. In this new SPORE proposal, we build on our earlier results and on new findings and technologies, in four projects and several support components. (1) We have discovered that the mevalonate pathway is upregulated by anti-HER2 therapy and can serve as an escape pathway, leading to treatment failure. But several already approved agents (statins and bisphosphonates) can inhibit this pathway, and we will explore their mechanisms and their potential to overcome this treatment failure, both in preclinical studies and a clinical trial. (2)The steroid receptor coactivator SRC-3 is frequently overexpressed in breast cancer and promotes growth and endocrine resistance, especially when HER2 is also active. Finding that inhibiting upstream kinases PKC and PKD that support SRC-3 activity can suppress tumor growth and restore endocrine sensitivity, we propose to dissect the functions of these kinases on SRC-3 in defined preclinical models, and test the efficacy and safety of a PKC inhibitor added to endocrine therapy in a clinical trial. (3) Chemoprevention of breast cancer has had limited acceptance due to expense and concerns about side effects of long-term continuous treatment with existing agents. But we have now discovered that activated pSTAT5 blocks the apoptosis that is typically induced as a protective mechanism by activation of oncogenes, and that even short-term suppression of pSTAT5 with agents like ruxolitinib can cause regression of premalignant breast lesions and prevent progression to cancer in mice. In both mouse models and an early clinical trial, we will investigate this approach for effective intermittent chemoprevention. (4) Though immunotherapy promises exquisite specificity and safety, results have been disappointing as tumor cells alter targeted antigens and generate an immunosuppressive environment to escape. Here we propose to adoptively transfer T cells engineered to attack two tumor-associated antigens rather than one, and to express a chimeric receptor that causes the repressive cytokine 1L4 to promote T cell cytotoxicity instead. Our unique, widely used breast Tissue Resource/Pathology Core, along with Biostatistics and Administrative Cores give key support to this SPORE. Our highly successful Developmental Projects and Career Development programs will continue to encourage new ideas and new investigators in translational breast cancer research.

Public Health Relevance

SPOREs exist to bring the best bench science and the best clinical science together, to optimize the application of what we know and explore the most profitable parts of what we don't yet know, to improve our outcomes in treating and hopefully preventing breast cancer. We've made strides in defining effective combinations of therapy and circumventing resistance that now affect patient treatment every day, and we will continue to make more in this proposed new SPORE while also researching the farther limits to find new and better ways to do promising things like chemoprevention and immunotherapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA186784-01
Application #
8738883
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1))
Program Officer
Kuzmin, Igor A
Project Start
2014-09-19
Project End
2019-08-31
Budget Start
2014-09-19
Budget End
2015-08-31
Support Year
1
Fiscal Year
2014
Total Cost
$2,162,000
Indirect Cost
$864,754
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Yu, L; Liang, Y; Cao, X et al. (2016) Identification of MYST3 as a novel epigenetic activator of ERα frequently amplified in breast cancer. Oncogene :
Malorni, Luca; Giuliano, Mario; Migliaccio, Ilenia et al. (2016) Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Mol Cancer Res 14:470-81
Fu, Xiaoyong; Jeselsohn, Rinath; Pereira, Resel et al. (2016) FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A 113:E6600-E6609
Eedunuri, Vijay Kumar; Rajapakshe, Kimal; Fiskus, Warren et al. (2015) miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol 29:1170-83
Nardone, Agostina; De Angelis, Carmine; Trivedi, Meghana V et al. (2015) The changing role of ER in endocrine resistance. Breast 24 Suppl 2:S60-6
Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao et al. (2015) Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clin Cancer Res 21:3995-4003
Shi, Aiping; Dong, Jie; Hilsenbeck, Susan et al. (2015) The Status of STAT3 and STAT5 in Human Breast Atypical Ductal Hyperplasia. PLoS One 10:e0132214
Dowst, Heidi; Pew, Benjamin; Watkins, Chris et al. (2015) Acquire: an open-source comprehensive cancer biobanking system. Bioinformatics 31:1655-62
Sine, Jessica; Urban, Cordula; Thayer, Derek et al. (2015) Photo activation of HPPH encapsulated in "Pocket" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts. Int J Nanomedicine 10:125-45
Sinha, Vidya C; Qin, Lan; Li, Yi (2015) A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis. Mol Cancer Res 13:231-8

Showing the most recent 10 out of 12 publications