Our previous SPORE had separate Cores for tissue collection/curation (old Core A: National Tissue Resource) and for pathologic evaluation (old Core C: Pathology), but in this new application they are combined in one Core, the National Tissue Resource and Pathology Core (NTRPC), since they are highly integrated and work closely with one another. The NTRPC also collaborates closely with Core B (Biostatistics and Data Management), which is responsible for informatics to manage inventory and annotation data. The objectives of the NTPRC are: (1) To provide centralized support for acquisition, banking, management, and distribution of tissue within the SPORE, and to maintain and update the databases with annotation and follow-up associated with these tissues. We will manage and distribute tissue and data from legacy inventories to qualified researchers, inside and outside our SPORE;collect, quality control, manage, and distribute newly acquired breast cancer materials including clinical trial specimens to qualified researchers;and annotate materials already in the collections from appropriately consented subjects with additional clinical, pathologic and follow-up information. (2) To provide histologic assessment and quality control of these tissues, along with tissue-based studies such as IHC using these clinical specimens as well as mouse tissues from the preclinical experiments. We will quality control and perform accurate pathologic assessment of tumors;and coordinate and manage the pathology support for the SPORE projects, developing new assays as required and working with the investigators to determine the methodologies most appropriate for their needs. The NTRPC is a continuation of two existing, well-functioning, and absolutely essential Cores. Although the guidelines state that

Public Health Relevance

Lack access to high quality, well annotated clinical specimens is a major impediment to progress in translational research. Core A has a long-standing and exemplary track record for making such tissues available to investigators inside and outside the SPORE. Further, breast cancer is a heterogeneous disease that requires trained histotechnologists, and very experienced pathologists to perform and interpret assays, and to properly handle valuable pre-clinical and highly annotated clinical specimens.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
United States
Zip Code
Yu, L; Liang, Y; Cao, X et al. (2016) Identification of MYST3 as a novel epigenetic activator of ERα frequently amplified in breast cancer. Oncogene :
Malorni, Luca; Giuliano, Mario; Migliaccio, Ilenia et al. (2016) Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Mol Cancer Res 14:470-81
Fu, Xiaoyong; Jeselsohn, Rinath; Pereira, Resel et al. (2016) FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A 113:E6600-E6609
Eedunuri, Vijay Kumar; Rajapakshe, Kimal; Fiskus, Warren et al. (2015) miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol 29:1170-83
Nardone, Agostina; De Angelis, Carmine; Trivedi, Meghana V et al. (2015) The changing role of ER in endocrine resistance. Breast 24 Suppl 2:S60-6
Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao et al. (2015) Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clin Cancer Res 21:3995-4003
Shi, Aiping; Dong, Jie; Hilsenbeck, Susan et al. (2015) The Status of STAT3 and STAT5 in Human Breast Atypical Ductal Hyperplasia. PLoS One 10:e0132214
Dowst, Heidi; Pew, Benjamin; Watkins, Chris et al. (2015) Acquire: an open-source comprehensive cancer biobanking system. Bioinformatics 31:1655-62
Sine, Jessica; Urban, Cordula; Thayer, Derek et al. (2015) Photo activation of HPPH encapsulated in ""Pocket"" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts. Int J Nanomedicine 10:125-45
Sinha, Vidya C; Qin, Lan; Li, Yi (2015) A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis. Mol Cancer Res 13:231-8

Showing the most recent 10 out of 12 publications