In a recent clinical trial led by Co-Leader Dr. Smith, Cabozantinib (CABO;XL-184) showed unprecedented bone scan responses in men with castration-resistant prostate cancer (CRPC). Although marked responses are seen, patients eventually progress and about 30% of patients do not respond. CABO is a multi-tyrosine kinase inhibitor with greatest activity against MET, VEGFR2 and RET, which have been implicated in prostate cancer (PCa) progression and the bone microenvironment. Using preclinical models we have found that some PCas show differential sensitivity to CABO when in bone versus soft tissue. Furthermore, through integrative sequencing, we have found that MET activation compensates for loss of androgen receptor (AR) signaling in CRPC. These clinical and pre-clinical results provide a compelling rationale for studying the role of both the tumor itself and the tumor microenvironment in predicting tumor sensitivity and resistance to CABO. Hence, the overarching goal of this proposal is to leverage an ongoing investigator-initiated clinical trial of CABO and use in vitro and in vivo modeling to

Public Health Relevance

Prostate cancer is the most common non-skin cancer of men. When prostate cancer progresses, over 80% of men develop bone metastases which cause fracture and pain. Cabozantanib (CABO) treatment results in marked regression of prostate cancer however it is not effective in all patients and resistance eventually develops. Defining mechanisms of resistance will lead us to improve clinical effectiveness of CABO or determine which patients would or would not benefit from CABO treatment.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Ann Arbor
United States
Zip Code
Udager, Aaron M; DeMarzo, Angelo M; Shi, Yang et al. (2016) Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics. Prostate 76:845-53
Kaushik, Akash K; Shojaie, Ali; Panzitt, Katrin et al. (2016) Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nat Commun 7:11612
Feng, Felix Y; Kothari, Vishal (2016) Driven to metastasize: Kinases as potential therapeutic targets in prostate cancer. Proc Natl Acad Sci U S A 113:473-5
Allen, Eliezer M Van; Robinson, Dan; Morrissey, Colm et al. (2016) A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: Implications for precision cancer medicine. Oncotarget :
Niknafs, Yashar S; Han, Sumin; Ma, Teng et al. (2016) The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat Commun 7:12791
Fabris, Linda; Ceder, Yvonne; Chinnaiyan, Arul M et al. (2016) The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur Urol 70:312-22
Shukla, Sudhanshu; Zhang, Xiang; Niknafs, Yashar S et al. (2016) Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer. Neoplasia 18:489-99
Tomlins, Scott A; Day, John R; Lonigro, Robert J et al. (2016) Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol 70:45-53
Roychowdhury, Sameek; Chinnaiyan, Arul M (2016) Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin 66:75-88
Day, Kathleen C; Lorenzatti Hiles, Guadalupe; Kozminsky, Molly et al. (2016) HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res :

Showing the most recent 10 out of 45 publications