Drug addiction develops into a debilitating psychiatric disorder. Changes in gene expression in brain reward systems are believed to contribute to the pathogenesis and maintenance of this condition. Recently, Increasing evidence has implicated epigenetic modifications of the genome through DNA methylation, histone modifications and non-coding RNAs (i.e., microRNAs) in many biological processes, including modification of the nervous system during learning, memory, and addiction. Such epigenetic mechanisms can integrate various environmental stimuli and cause long-term drug-induced transcriptional and behavioral changes. However, the detection of epigenetic alterations requires specialized instrumentation and expertise. It is not practical at the present time for most laboratories to become fully proficient in all aspects of experimental design and data analysis that are required to perform epigenetic genome-wide profiling. Moreover, fast-developing technology has enabled the Core to perform transcriptome analysis at the single cell level, which will certainly benefit drug addiction research, given the fact that brain reward regions are so heterogeneous. The CSORDA Epigenetics and Transcriptome Core (E/T-Core) Is newly established and with the goal of providing opportunities for drug addiction researchers to carry out epigenetic analyses (e.g., DNA methylation, histone modifications, microRNA detection), as well as advanced gene expression analyses with proficiency. The epigenetic and transcript profiling approaches can be broadly and effectively applied to drug addition studies to bring forward new important insights to advance the field.

Public Health Relevance

The E/T core provides exciting new technologies for epigenetic analysis as well as advanced gene expression analyses including single cell transcriptome profiling, which undoubtedly play an important role in the drug addiction studies.

Agency
National Institute of Health (NIH)
Type
Specialized Center (P50)
Project #
5P50DA005010-28
Application #
8685215
Study Section
Special Emphasis Panel (ZDA1)
Project Start
Project End
Budget Start
Budget End
Support Year
28
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Erbs, Eric; Faget, Lauren; Scherrer, Gregory et al. (2015) A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct 220:677-702
Wang, Nan; Gray, Michelle; Lu, Xiao-Hong et al. (2014) Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease. Nat Med 20:536-41
Wassum, Kate M; Greenfield, Venuz Y; Linker, Kay E et al. (2014) Inflated reward value in early opiate withdrawal. Addict Biol :
Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne et al. (2014) Methylphenidate and brain activity in a reward/conflict paradigm: role of the insula in task performance. Eur Neuropsychopharmacol 24:897-906
Tsoa, Rosemarie W; Coskun, Volkan; Ho, Chi K et al. (2014) Spatiotemporally different origins of NG2 progenitors produce cortical interneurons versus glia in the mammalian forebrain. Proc Natl Acad Sci U S A 111:7444-9
Taylor, Anna M W; Murphy, Niall P; Evans, Christopher J et al. (2014) Correlation between ventral striatal catecholamine content and nociceptive thresholds in neuropathic mice. J Pain 15:878-85
Ostlund, Sean B; Kosheleff, Alisa R; Maidment, Nigel T (2014) Differential effects of systemic cholinergic receptor blockade on Pavlovian incentive motivation and goal-directed action selection. Neuropsychopharmacology 39:1490-7
Becker, Jérôme A J; Clesse, Daniel; Spiegelhalter, Coralie et al. (2014) Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacology 39:2049-60
Pradhan, Amynah A; Smith, Monique L; McGuire, Brenna et al. (2014) Characterization of a novel model of chronic migraine. Pain 155:269-74
Liu, Hailiang; Chen, Yongchang; Niu, Yuyu et al. (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14:323-8

Showing the most recent 10 out of 36 publications