The Administration Core A represents the central administrative component of the Center for the Neurobiology of Addiction Treatment. Overall supervision of the Center is conducted by Dr. Steven Childers, the director and principal investigator. This supervision is also maintained by the Executive Committee, consisting of the principal Investigators of the various Cores and Projects. Administration of the Center is accomplished by our administrative assistant, Ms. Lucy Fasano. In addition to providing the overall central administrative duties for the Center, Core A is also responsible for maintaining non scientific responsibilities. For example, it provides funds for the annual meeting of the External Advisory Board. The Core provides a clearinghouse of information for the lay community about issues regarding the neuroscience of drug abuse, and provides travel funds for our investigators to attend outreach activities. Core A also coordinates the various training and seminar activities for the Center. In this regard, Core A functions in a crucial role to supplement the science of the other projects with the service and educational components that are vital to the Center's overall purpose. Finally, under the supervision of Dr. Sara Jones, Core A provides funding and administrative support for the Center's Pilot Studies Program.

Public Health Relevance

The goal of the Center for the Neurobiology of Addiction Treatment is to study the neurobiological mechanisms of pharmacotherapies in animal models including rats and nonhuman primates, so that better strategies of drug treatment can be developed. Core A will provide the administrative support to allow these studies to proceed.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Specialized Center (P50)
Project #
5P50DA006634-21
Application #
8378856
Study Section
Special Emphasis Panel (ZDA1-EXL-T)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
21
Fiscal Year
2012
Total Cost
$185,727
Indirect Cost
$60,236
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Siciliano, Cody A; Saha, Kaustuv; Calipari, Erin S et al. (2018) Amphetamine Reverses Escalated Cocaine Intake via Restoration of Dopamine Transporter Conformation. J Neurosci 38:484-497
Ilyasov, Alexander A; Milligan, Carolanne E; Pharr, Emily P et al. (2018) The Endocannabinoid System and Oligodendrocytes in Health and Disease. Front Neurosci 12:733
Ding, Huiping; Kiguchi, Norikazu; Yasuda, Dennis et al. (2018) A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 10:
Chen, R; McIntosh, S; Hemby, S E et al. (2018) High and low doses of cocaine intake are differentially regulated by dopamine D2 receptors in the ventral tegmental area and the nucleus accumbens. Neurosci Lett 671:133-139
John, William S; Martin, Thomas J; Solingapuram Sai, Kiran Kumar et al. (2018) Chronic ?9-THC in Rhesus Monkeys: Effects on Cognitive Performance and Dopamine D2/D3 Receptor Availability. J Pharmacol Exp Ther 364:300-310
Melchior, James R; Jones, Sara R (2017) Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 85:93-104
Namjoshi, Sanjeev V; Raab-Graham, Kimberly F (2017) Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 10:45
Gould, Robert W; Czoty, Paul W; Porrino, Linda J et al. (2017) Social Status in Monkeys: Effects of Social Confrontation on Brain Function and Cocaine Self-Administration. Neuropsychopharmacology 42:1093-1102
Karkhanis, Anushree; Holleran, Katherine M; Jones, Sara R (2017) Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. Int Rev Neurobiol 136:53-88
Luessen, D J; Sun, H; McGinnis, M M et al. (2017) Chronic intermittent ethanol exposure selectively alters the expression of G? subunit isoforms and RGS subtypes in rat prefrontal cortex. Brain Res 1672:106-112

Showing the most recent 10 out of 310 publications