The Tissue Core will collect tissue from subjects in Project 1 and distribute it to Projects 2 and 3. Specifically: Brains of Project 1 rats (Dr. Roberts) that self-administer cocaine under the DT4 schedule, with and without exposure to candidate medications, will be hemisected and distributed to Project 2 for analysis of immediate early gene expression (Dr. Porrino) and tissue neurotransmitter content (Dr. Jones). Brains of Project 1 rats (Dr. Roberts) that self-administer cocaine under the progressive-ratio schedule, with and without exposure to candidate medications, will be hemisected and distributed to Project 3 for analysis of receptor binding and G-protein receptor function (Dr. Childers) and signal transduction systems (Dr. Howlett). Brains of monkeys that self-administer cocaine under the progressive-ratio schedule in Project 1 (Dr. Nader) will be hemisected and distributed as follows: ? one hemisphere will be distributed to Project 2 for in vitro receptor autoradiography (Dr. Porrino) and tissue neurotransmitter content (Dr. Jones). ? the other hemisphere will be distributed to Project 3 for identification of candidate genes and proteins via laser capture dissection (Dr. Hemby). In later years of the Center, these experiments will include synaptosomal preparations. In addition to distributing tissue from Project 1, the Tissue Core will treat separate groups of rats with drugs found to demonstrate efficacy in reducing self-administration rats in Project 1. Brains from these rats will be distributed to Project 3 for assessment of G-protein receptor function (Dr. Childers) and changes in signal transduction systems (Dr. Howlett). In addition to brain tissue, cerebrospinal fluid and venous blood will be periodically collected from nonhuman primates in Project 1 and stored for future use by investigators within and outside the Center. Several additional tissues will be collected at necropsy, including the pituitary gland, heart, myocardium, pancreatic tail, Kver lobe and adrenal glands. This list can be expanded based on future research questions and collaborations within and outside the Center.

Public Health Relevance

The Tissue Core will play an integral role in collecting, storing and organizing tissue samples form animals used in the Center's behavioral experiments and making sure those are distributed to investigatiors performing imaging and biochemical experiments.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Specialized Center (P50)
Project #
5P50DA006634-21
Application #
8378858
Study Section
Special Emphasis Panel (ZDA1-EXL-T)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
21
Fiscal Year
2012
Total Cost
$91,381
Indirect Cost
$29,636
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Melchior, James R; Jones, Sara R (2017) Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 85:93-104
Blume, Lawrence C; Patten, Theresa; Eldeeb, Khalil et al. (2017) Cannabinoid Receptor Interacting Protein 1a Competition with ?-Arrestin for CB1 Receptor Binding Sites. Mol Pharmacol 91:75-86
John, William S; Martin, Thomas J; Nader, Michael A (2017) Behavioral Determinants of Cannabinoid Self-Administration in Old World Monkeys. Neuropsychopharmacology 42:1522-1530
Brodnik, Zachary D; Ferris, Mark J; Jones, Sara R et al. (2017) Reinforcing Doses of Intravenous Cocaine Produce Only Modest Dopamine Uptake Inhibition. ACS Chem Neurosci 8:281-289
Howlett, Allyn C; Abood, Mary E (2017) CB1 and CB2 Receptor Pharmacology. Adv Pharmacol 80:169-206
Gould, Robert W; Czoty, Paul W; Porrino, Linda J et al. (2017) Social Status in Monkeys: Effects of Social Confrontation on Brain Function and Cocaine Self-Administration. Neuropsychopharmacology 42:1093-1102
Namjoshi, Sanjeev V; Raab-Graham, Kimberly F (2017) Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 10:45
Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T et al. (2017) Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls. Drug Alcohol Depend 175:24-35
Siciliano, Cody A; Saha, Kaustuv; Calipari, Erin S et al. (2017) Amphetamine reverses escalated cocaine intake via restoration of dopamine transporter conformation. J Neurosci :
Luessen, D J; Sun, H; McGinnis, M M et al. (2017) Chronic intermittent ethanol exposure selectively alters the expression of G? subunit isoforms and RGS subtypes in rat prefrontal cortex. Brain Res 1672:106-112

Showing the most recent 10 out of 301 publications