EFFECTS OF CHRONIC DRUG COMBINATION TREATMENTS ON THE REINFORCING AND COGNITIVE EFFECTS OF COCAINE IN RODENTS AND MONKEYS Michael A. Nader, PI Paul W. Czoty, Thomas J. Martin, Mark J. Ferris, Mei-Chuan Ko, Daniel Yohannes, Co-Is The goal of this Project is to achieve a better understanding of the pharmacological determinants of the reinforcing effects of cocaine in rodent and nonhuman primate models of drug abuse. In the previous funding period, we found that monoamine releasers d-amphetamine, phenmetrazine (PM) and phendimetrazine (PDM) effectively decreased cocaine self-administration in rats and monkeys. For the studies proposed in Project 1, we will incorporate a strategy that involves drug combinations in order to meet two goals: (1) reduce the amount of drug (i.e., PM or PDM) necessary to decrease cocaine self-administration and (2) improve treatment efficacy. For all studies, one of the drugs (Drug A) will be PM (in rats) and PDM (in monkeys). The combination drug (Drug B) will be based on input from our clinicial colloborators and be a compound that improves cognitive performance in animals with a cocaine history.
In Specific Aim 1, rats will self-administer cocaine under a long-access 6-hr session; some rats will then be tested in two paradigms designed to assess cognition/attention/impulsivity, the delayed discounting procedure and the 5-choice serial reaction time task. Drug B candidates that show remediation of cocaine-induced disruptions in cognitive performance will be tested in another group of rats self-administering cocaine and co-treated with PM. Drug B candidates that effectively reduce rodent self-administration will be tested in nonhuman primates (Specific Aim 2) under two different cocaine access conditions - progressive-ratio and concurrent food-cocaine choice. If the combination of PDM and Drug B effectively decreases cocaine self-administration under either condition, the effects of the combination on cognitive performance and physiology, as assessed with telemetry, will be examined in these same monkeys (Specific Aim 3). These studies combine chronic drug treatment and drug combinations under multiple behavioral conditions in rats and monkeys and should provide valuable translational information for the development of novel cocaine pharmacotherapies.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
United States
Zip Code
Siciliano, Cody A; Saha, Kaustuv; Calipari, Erin S et al. (2018) Amphetamine Reverses Escalated Cocaine Intake via Restoration of Dopamine Transporter Conformation. J Neurosci 38:484-497
Ilyasov, Alexander A; Milligan, Carolanne E; Pharr, Emily P et al. (2018) The Endocannabinoid System and Oligodendrocytes in Health and Disease. Front Neurosci 12:733
Ding, Huiping; Kiguchi, Norikazu; Yasuda, Dennis et al. (2018) A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 10:
Chen, R; McIntosh, S; Hemby, S E et al. (2018) High and low doses of cocaine intake are differentially regulated by dopamine D2 receptors in the ventral tegmental area and the nucleus accumbens. Neurosci Lett 671:133-139
John, William S; Martin, Thomas J; Solingapuram Sai, Kiran Kumar et al. (2018) Chronic ?9-THC in Rhesus Monkeys: Effects on Cognitive Performance and Dopamine D2/D3 Receptor Availability. J Pharmacol Exp Ther 364:300-310
Blume, Lawrence C; Patten, Theresa; Eldeeb, Khalil et al. (2017) Cannabinoid Receptor Interacting Protein 1a Competition with ?-Arrestin for CB1 Receptor Binding Sites. Mol Pharmacol 91:75-86
Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T et al. (2017) Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls. Drug Alcohol Depend 175:24-35
John, William S; Martin, Thomas J; Nader, Michael A (2017) Behavioral Determinants of Cannabinoid Self-Administration in Old World Monkeys. Neuropsychopharmacology 42:1522-1530
Melchior, James R; Jones, Sara R (2017) Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 85:93-104
Namjoshi, Sanjeev V; Raab-Graham, Kimberly F (2017) Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 10:45

Showing the most recent 10 out of 310 publications