The molecular mechanism for morphine tolerance has not been firmly established yet. The current model of[j-opioid receptor (MOR) desensitization via the &-Arrestin pathway cannot account for the numerousobservations that other neurotransmitter receptor activities, such as NMDA, could contribute to morphinetolerance. The activity of other opioid receptors, such as the 6-opioid receptor (DOR), could be implicated inmorphine tolerance development also. Since morphine can activate and desensitize DOR during prolongedtreatment, our working hypothesis is that the post-signaling events occurring within the DOR-containingneurons during morphine treatment contribute to tolerance development. Our working hypothesis also is thatmorphine has post-signaling events distinct from those of other opioid agonists. In order to demonstratethese hypotheses, agonist-dependent signaling events will be established for morphine activation of DOR. Inour studies with MOR signaling, we have demonstrated that morphine differs from other agonists in itspathway to activate ERK1/2. Agonists such as etorphine activate ERK1/2 via the B-Arrestin-dependentpathway, while morphine activates ERK1/2 via the PKC-dependent pathway. This divergent activation resultsin differential translocation of the activated ERK1/2 and the transcripts produced. Therefore, the signalingpathway and the post-signaling events of morphine in cell models expressing DOR will be established. Thepossible involvement of the PKC-dependent pathway on morphine-mediated DOR activation of ERK1/2 willbe studied. The specific PKC subtypes involved will be defined. The reasons for the differences amongagonists in selecting a pathway will be investigated by monitoring protein-protein interactions using a novelprotease assay system. Parallel studies will be conducted with primary neuronal cultures. The blockade ofspecific PKC subtypes in DOR-expressing neurons on in vivo morphine tolerance development will beexplored. By selectively inactivating the morphine signaling pathway, and subsequently its post-signalingevents in DOR-containing neurons, possible blockade of morphine tolerance without altering morphineactivities in MOR containing neuron could be accomplished.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Specialized Center (P50)
Project #
2P50DA011806-11A1
Application #
7612856
Study Section
Special Emphasis Panel (ZDA1-RXL-E (05))
Project Start
2008-09-30
Project End
2013-06-30
Budget Start
2008-12-01
Budget End
2009-06-30
Support Year
11
Fiscal Year
2008
Total Cost
$178,349
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee et al. (2017) Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene 598:113-130
Kibaly, Cherkaouia; Lin, Hong-Yiou; Loh, Horace H et al. (2017) Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacol Res 119:153-168
Kibaly, Cherkaouia; Kam, Angel Y F; Loh, Horace H et al. (2016) Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion. Biol Psychiatry 79:906-16
Meng, Jingjing; Roy, Sabita (2016) Study of Epithelium Barrier Functions by Real-time TER Measurement. Bio Protoc 6:
Banerjee, S; Sindberg, G; Wang, F et al. (2016) Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol 9:1418-1428
Banerjee, Santanu; Ninkovic, Jana; Meng, Jingjing et al. (2015) Morphine compromises bronchial epithelial TLR2/IL17R signaling crosstalk, necessary for lung IL17 homeostasis. Sci Rep 5:11384
Wang, Yan; Wang, Yan-Xia; Liu, Ting et al. (2015) ?-Opioid receptor attenuates A? oligomers-induced neurotoxicity through mTOR signaling. CNS Neurosci Ther 21:8-14
Meng, Jingjing; Banerjee, Santanu; Li, Dan et al. (2015) Opioid Exacerbation of Gram-positive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization. Sci Rep 5:10918
Kotecki, Lydia; Hearing, Matthew; McCall, Nora M et al. (2015) GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner. J Neurosci 35:7131-42
Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee et al. (2015) Analysis of epigenetic mechanisms regulating opioid receptor gene transcription. Methods Mol Biol 1230:39-51

Showing the most recent 10 out of 308 publications