Addiction to drugs of abuse produces pathological changes in synaptic physiology that impair the capacity of the prefrontal cortex (PFC) to communicate with the basal ganglia and impedes the successful regulation of compulsive drug-seeking. The primary portal of entry by the PFC into the basal ganglia is through the nucleus accumbens, and withdrawal from self-administered cocaine is associated with enduring adaptations at PFC synapses in the accumbens. As part of the current Project 1 (2008-13), we characterized differences in accumbens adaptations depending on whether or not rats were withdrawn with or without extinction training. We recently discovered a rapid, transient synaptic potentiation in the accumbens core (NAcore) but not in the shell (NAshell) that correlated with the intensity of cue-reinstated cocaine seeking. Conversely, a similar synaptic potentiation occurs in the NAshell, not NAcore, when rats are placed into an extinguished context.
Aim 1 will characterize this rapid accumbens synaptic plasticity using different behavioral protocols.
Aim 2 uses optogenetics to test the hypotheses that giutamatergic afferents from the PFC and dopaminergic inputs from the ventral tegmental area (VTA) are necessary forthe rapid, transient synaptic potentiation in excitatory transmission to be characterized in Aim 1. A variety of proteins and signaling mechanisms are purported to account for the cocaine-induced changes in synaptic plasticity at PFC-accumbens synapses. We present preliminary data showing a potential role for matrix metalloproteases (MMPs) in reinstated cocaine seeking and the plasticity being characterized in Aims 1 &2. MMP activity known to be is necessary for shaping the extracellular matrix and for expressing many forms of plasticity, and in Aim 3 we propose to determine: 1) if inhibiting MMP signaling reduces cocaine seeking and extinction responding, and 2) if this is accomplished by preventing the rapid, transient synaptic potentiation being characterized in Aims 1 &2. Project 1 synergizes with other NARC projects and cores by sharing animal and optogenetic use through the Animal Core, and through scientific synergisms based on all projects examining different aspects of PFC and VTA regulation ofthe nucleus accumbens.

Public Health Relevance

Project 1 describes a new form of morphological and physiological synaptic plasticity that is correlated with cocaine seeking. This synaptic plasticity will be evaluated for its importance in cocaine seeking, as well as in the ability to inhibit cocaine seeking. A set of enzymes, the MMPs, are known to regulate synaptic plasticity and have been shown to regulate cocaine seeking. These enzymes will be examined as a possible target for therapeutic intfirvention in animal models of cocaine relapse.

National Institute of Health (NIH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
United States
Zip Code
McClure, Erin A; Baker, Nathaniel L; Gipson, Cassandra D et al. (2015) An open-label pilot trial of N-acetylcysteine and varenicline in adult cigarette smokers. Am J Drug Alcohol Abuse 41:52-6
McGinty, Jacqueline F; Zelek-Molik, Agnieska; Sun, Wei-Lun (2014) Cocaine self-administration causes signaling deficits in corticostriatal circuitry that are reversed by BDNF in early withdrawal. Brain Res :
Scofield, Michael D; Kalivas, Peter W (2014) Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. Neuroscientist 20:610-22
Stankeviciute, Neringa M; Scofield, Michael D; Kalivas, Peter W et al. (2014) Rapid, transient potentiation of dendritic spines in context-induced relapse to cocaine seeking. Addict Biol 19:972-4
McClure, Erin A; Gipson, Cassandra D; Malcolm, Robert J et al. (2014) Potential role of N-acetylcysteine in the management of substance use disorders. CNS Drugs 28:95-106
Mahler, Stephen V; Vazey, Elena M; Beckley, Jacob T et al. (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577-85
Moorman, David E; Aston-Jones, Gary (2014) Orbitofrontal cortical neurons encode expectation-driven initiation of reward-seeking. J Neurosci 34:10234-46
Gipson, Cassandra D; Kupchik, Yonatan M; Kalivas, Peter W (2014) Rapid, transient synaptic plasticity in addiction. Neuropharmacology 76 Pt B:276-86
Sun, Wei-Lun; Coleman, Nortorious T; Zelek-Molik, Agnieszka et al. (2014) Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict Biol 19:77-86
Kalivas, Peter W; Gipson, Cassandra D (2014) "Mourning" a lost opportunity. Psychopharmacology (Berl) 231:3921-2

Showing the most recent 10 out of 118 publications