The focus of this research is age-related hearing loss (presbycusis). Currently, more than 28 million Americans have impaired hearing and approximately 75% of these persons are over the age of 55. The prevalence of presbycusis will increase substantially with the aging of the population. To meet the challenges of this most common chronic condition of aging, improved diagnostic methods, treatment approaches, and prevention strategies will be of great importance. To meet these objectives, four research projects are proposed. Project 1 assesses age-related changes in human cochlear and neural function related to metabolic, sensory, and neural pathologies. Project 2 examines the impact of metabolic and sensory presbycusis and aging on brain structure and functional networks that support speech recognition. Project 3 identifies genetic variations causing an increased susceptibility to age-related hearing loss using DNA samples from older adults in our study and defines their pathological consequences in human temporal bones. Project 4 studies adult stem cell dependency on the cochlear extracellular matrix (ECM) microenvironment using animal models of metabolic presbycusis and ECM deficiency, and observations of cochlear tissues from human temporal bones. A central goal is to relate changes observed in animal models of metabolic presbycusis to declines in hearing in older humans. In parallel with this goal, results from the large battery of tests obtained from participants in our longitudinal study (Human Subjects Core) will be analyzed to further define and validate phenotypes of age-related hearing loss. Thus, four interrelated research projects, supported by large numbers of well-characterized human subjects and a detailed database of cross-sectional and longitudinal data, form a cohesive program that addresses fundamental questions on human presbycusis. The Clinical Research Center is unique in several respects, including its 25-year longitudinal study of hearing in older persons, the diversity of basic, translational, and clinical approaches, and its focus on a disorder that contributes to poor communication abilities and reduced quality of life for millions of older adults.

Public Health Relevance

The Clinical Research Center leverages the multidisciplinary and wide-ranging expertise in each project, and the wealth of information available in the human subject database, to generate new knowledge on the high prevalence public health problem of age-related hearing loss. Our goals are to reduce its prevalence, slow its progression, and develop new prevention, diagnostic, and treatments strategies to improve communication and quality of life of older adults. Subproject 1 Defining Phenotypes of Age-Related Hearing Loss Lead Investigator: Judy R. Dubno, Ph.D. DESCRIPTION (provided by applicant): The complex genetic and environmental factors affecting human hearing over the lifespan contribute to a large variation in audiometric profiles and suprathreshold measures of auditory function. As a result, determining mechanisms of age-related hearing loss in older adults is challenging because genetic, age, noise history, injury, disease, medication, diet, and other factors can work independently and jointly to alter human auditory function. Although morphologic findings from older humans are limited to postmortem data, experimental procedures with animals of known heredity can disrupt specific cochlear systems, model certain pathologic conditions, and introduce or minimize environmental exposures, while measuring subsequent changes in auditory function. Consistent with results from animal models linking audiometric profiles to specific cochlear pathologies, such as metabolic or sensory loss, audiograms from the Clinical Research Center's human subject database (Core B) were classified into four audiometric phenotypes, which provided a means to characterize the pathophysiology of hearing loss in older humans. Audiometric phenotypes determined using supervised machine learning classifiers were consistent with expected demographic and noise history patterns that segregate with patterns of hearing loss. Project 1 will refine and further validate these phenotyping methods using suprathreshold measures of cochlear and neural function beyond the audiogram that characterize metabolic and sensory presbyacusis, and the additive effects of morphologic and functional neural loss. To meet this goal Aim 1.1 tests the hypothesis that older adults with metabolic and sensory presbyacusis differ in cochlear nonlinearities and lower frequency suprathreshold auditory function. Aim 1.2 tests the hypothesis that changes in auditory nerve activity result in unique and additive effects in older adults with metabolic and sensory presbyacusis. Thus, Project 1 will assess age- related changes in auditory function related to metabolic, sensory, and neural pathologies and link findings to Project 2, focused on central auditory and cortical changes, and to translational Projects 3 and 4, which will determine the genetic and cellular mechanisms of age-related hearing loss using humans and human tissue. With these approaches, morphologic and physiologic changes characterizing metabolic, sensory, and neural presbyacusis provide a framework for assessing and interpreting age-related changes in human auditory function. PUBLIC HEALTH RELEVANCE: Knowledge of the variations in pathophysiology underlying human age-related hearing loss may dictate different diagnostic test batteries, hearing-aid fitting algorithms, auditory-training regimens, and recommendations for communication strategies. This new information will lead to better diagnosis and treatments for this high-prevalence public health concern, and improved communication and quality of life for millions of older adults.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Specialized Center (P50)
Project #
2P50DC000422-26
Application #
8617361
Study Section
Special Emphasis Panel (ZDC1-SRB-K (15))
Program Officer
Cyr, Janet
Project Start
1997-07-01
Project End
2018-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
26
Fiscal Year
2014
Total Cost
$1,742,325
Indirect Cost
$556,075
Name
Medical University of South Carolina
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Ben Said, Mariem; Grati, M'hamed; Ishimoto, Takahiro et al. (2016) A mutation in SLC22A4 encoding an organic cation transporter expressed in the cochlea strial endothelium causes human recessive non-syndromic hearing loss DFNB60. Hum Genet 135:513-24
Simpson, Annie N; Simpson, Kit N; Dubno, Judy R (2016) Higher Health Care Costs in Middle-aged US Adults With Hearing Loss. JAMA Otolaryngol Head Neck Surg 142:607-9
Kuchinsky, Stefanie E; Vaden Jr, Kenneth I; Ahlstrom, Jayne B et al. (2016) Task-Related Vigilance During Word Recognition in Noise for Older Adults with Hearing Loss. Exp Aging Res 42:50-66
Fogerty, Daniel; Ahlstrom, Jayne B; Bologna, William J et al. (2016) Glimpsing Speech in the Presence of Nonsimultaneous Amplitude Modulations From a Competing Talker: Effect of Modulation Rate, Age, and Hearing Loss. J Speech Lang Hear Res 59:1198-1207
Tekin, Demet; Yan, Denise; Bademci, Guney et al. (2016) A next-generation sequencing gene panel (MiamiOtoGenes) for comprehensive analysis of deafness genes. Hear Res 333:179-84
Svec, Adam; Dubno, Judy R; Nelson, Peggy B (2016) Inherent envelope fluctuations in forward maskers: Effects of masker-probe delay for listeners with normal and impaired hearing. J Acoust Soc Am 139:1195-203
Lang, Hainan; Nishimoto, Eishi; Xing, Yazhi et al. (2016) Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss. Mol Ther 24:2000-2011
Vaden Jr, Kenneth I; Kuchinsky, Stefanie E; Ahlstrom, Jayne B et al. (2016) Cingulo-Opercular Function During Word Recognition in Noise for Older Adults with Hearing Loss. Exp Aging Res 42:67-82
Vaden Jr, Kenneth I; Matthews, Lois J; Eckert, Mark A et al. (2016) Longitudinal Changes in Audiometric Phenotypes of Age-Related Hearing Loss. J Assoc Res Otolaryngol :
Jennings, Skyler G; Ahlstrom, Jayne B; Dubno, Judy R (2016) Effects of age and hearing loss on overshoot. J Acoust Soc Am 140:2481

Showing the most recent 10 out of 109 publications