The main goal of the proposed research is to understand the mechanisms and regulation of ion permeation through C1- channels other than the cystic fibrosis transmembrane conductance regulatory (CFTR) present in secretory epithelia. These alternative C1- channels may be useful and important targets for pharmacological therapy in cystic fibrosis (CF). Our laboratory has successfully isolated and cloned a protein from bovine trachea that behaves as a Ca2+ -sensitive C1- channel (CaCC), and has semi-purified and reconstituted an outwardly-rectified C1- channel (ORCC). This application has four specific aims: (1) to test the hypothesis that the translated bovine tracheal cDNA forms an anion channel of identical characteristics to the native protein, that the 38 kDa subunit of the native tracheal CaCC protein is the result of post- translational processing of the cloned 100 kDa CaCC cDNA product, and to determine the biochemical properties of both native and cloned CaCCs. The functional properties of the proteins will also be characterized following reconstitution into planar lipid bilayers or transfection into eukaryotic cells; (2) to identify a full-length cDNA corresponding to the human CaCC homolog and to characterize the translated protein. The molecular structure and function of the human homolog of the bovine CaCC will be determined by screening of appropriate human epithelial cDNA libraries; (3) to purify a protein that behaves as an ORCC from bovine tracheal apical membrane vesicles and to identify and characterize the full-length cDNA that encodes this protein. Candidate proteins will be used to raise polyclonal antibodies that will be used to screen a bovine tracheal cDNA expression library. The ultimate goal is to isolate a full-length cDNA that encodes an ORCC and to characterize the translated protein with the aim of understanding is potential interaction with CFTR and/or other ion channels; (4) to determine if heterologous intestinal specific expression of the CaCC can overcome the lethal intestinal obstruction found in the CF knockout mouse model. We will test the hypothesis that tissue specific expression of the bovine CaCC in the intestine will prevent the lethal consequences of intestinal obstruction by ameliorating the adverse effects of impaired chloride secretion in the intestine. These studies will further our knowledge of the physiological, biochemical, and molecular properties of these important C1- transport pathways and increase our understanding of fluid secretion across airway and intestinal epithelial so that potential avenues of alternate therapy in CF can be devised and evaluated.

Project Start
2001-09-01
Project End
2002-08-31
Budget Start
Budget End
Support Year
5
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Type
DUNS #
004514360
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Du, Ming; Keeling, Kim M; Fan, Liming et al. (2009) Poly-L-aspartic acid enhances and prolongs gentamicin-mediated suppression of the CFTR-G542X mutation in a cystic fibrosis mouse model. J Biol Chem 284:6885-92
Du, Ming; Liu, Xiaoli; Welch, Ellen M et al. (2008) PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci U S A 105:2064-9
Guimbellot, Jennifer S; Fortenberry, James A; Siegal, Gene P et al. (2008) Role of oxygen availability in CFTR expression and function. Am J Respir Cell Mol Biol 39:514-21
Berdiev, Bakhrom K; Cormet-Boyaka, Estelle; Tousson, Albert et al. (2007) Molecular proximity of cystic fibrosis transmembrane conductance regulator and epithelial sodium channel assessed by fluorescence resonance energy transfer. J Biol Chem 282:36481-8
Rowe, Steven M; Varga, Karoly; Rab, Andras et al. (2007) Restoration of W1282X CFTR activity by enhanced expression. Am J Respir Cell Mol Biol 37:347-56
Gaggar, Amit; Li, Yao; Weathington, Nathaniel et al. (2007) Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients. Am J Physiol Lung Cell Mol Physiol 293:L96-L104
Benos, Dale J; Bashari, Edlira; Chaves, Jose M et al. (2007) The ups and downs of peer review. Adv Physiol Educ 31:145-52
Kellermayer, Richard; Szigeti, Reka; Keeling, Kim M et al. (2006) Aminoglycosides as potential pharmacogenetic agents in the treatment of Hailey-Hailey disease. J Invest Dermatol 126:229-31
Su, Xuefeng; Li, Qingnan; Shrestha, Kedar et al. (2006) Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis transmembrane conductance regulator. J Biol Chem 281:36960-8
Du, Ming; Keeling, Kim M; Fan, Liming et al. (2006) Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med 84:573-82

Showing the most recent 10 out of 37 publications