The kidney is a highly vascularized organ that in the normal adult receives about 20% of the cardiac output. The unique spatial arrangement of the kidney arterioles with each nephron is crucial for the regulation of renal blood flow, glomerular filtration rate and other specialized kidney functions that maintain homeostasis. Thus, the proper and timely assembly ofthe arterioles with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. The mechanisms that govern the development ofthe kidney vasculature are poorly understood. Foxdl + cells and their descendants, the Ren+ precursors, are the earliest metanephric progenitors for all the mural cells ofthe kidney arterioles including JG cells, pericytes, arteriolar smooth muscle cells (SMCs) and mesangial cells. We recently showed that deletion of RBP-J (the final transcriptional effector for all Notch receptors) is required to maintain the number of renin-expressing cells, and that it is crucial in the plasticity of vascular SMCs to regain the renin phenotype in response to a threat to homeostasis. Preliminary lineage tracing studies in vivo also suggest that cells from the renin lineage harboring the RBP-J -/- mutation do not die, adopting instead a distinct myofibroblast phenotype. Those experiments suggest that RBP-J regulates the fate and maintenance of renin cells. We anticipate that similar mutation further upstream from the renin precursor, such as in the Foxdl + progenitors, will significantly affect the differentiation ofthe cells that compose the renal arteriolar tree.Using in vivo lineage tracing, time- and cell-specific conditional deletion approaches, genome wide epigenetic and gene-expression profiling and cell identification with appropriate differentiation markers we will test the he overall hypothesis that RBP-J is necessary for the differentiation of Foxdl + and Renin+ progenitor cells and the establishment of cell identity-specific epigenetic marks and gene-expression patterns that culminate with the emergence of the differentiated mural cells of the renal arterioles.

Public Health Relevance

Elucidating how RBP-J regulates renal arterial development and mesangial cell differentiation could lead to a new understanding of vascular development and disease with eventual therapeutic applications. The proposed experiments will generate new iand exciting information of relevance to the fields of regeneration and vascular development and plasticity with the potential to benefit children and adults with kidney and vascular diseases .

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Specialized Center (P50)
Project #
5P50DK096373-03
Application #
8730638
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Gomez, R Ariel; Sequeira-Lopez, Maria Luisa S (2018) Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol 14:231-245
Sequeira-Lopez, Maria Luisa S; Gomez, R Ariel (2018) Preserving kidney health during intensive blood pressure control. Nat Rev Nephrol 14:537-538
Chevalier, Robert L (2018) Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol :
Mohamed, Tahagod; Sequeira-Lopez, Maria Luisa S (2018) Development of the renal vasculature. Semin Cell Dev Biol :
Liu, Hongbing; Chen, Shaowei; Yao, Xiao et al. (2018) Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles. Development 145:
Neubauer, Bjoern; Schrankl, Julia; Steppan, Dominik et al. (2018) Angiotensin II Short-Loop Feedback: Is There a Role of Ang II for the Regulation of the Renin System In Vivo? Hypertension 71:1075-1082
Gomez, R Ariel; Lopez, Maria Luisa S Sequeira (2017) Plasticity of Renin Cells in the Kidney Vasculature. Curr Hypertens Rep 19:14
Oka, Masafumi; Medrano, Silvia; Sequeira-L?pez, Maria Luisa S et al. (2017) Chronic Stimulation of Renin Cells Leads to Vascular Pathology. Hypertension 70:119-128
Song, Renfang; Lopez, Maria Luisa S Sequeira; Yosypiv, Ihor V (2017) Foxd1 is an upstream regulator of the renin-angiotensin system during metanephric kidney development. Pediatr Res 82:855-862
Chevalier, Robert L (2017) Evolutionary Nephrology. Kidney Int Rep 2:302-317

Showing the most recent 10 out of 40 publications