Burn-induced loss of muscle mass and decrease in tension generating capacity, due to the nitrogen catabolic state, increases morbidity and mortality. The goals ofthis proposal in mice are to delineate the cellular and molecular mechanisms of muscle wasting, and pharmacologically prevent the catabolic state of burns. In view ofthe heterogeneous effects of burn on diverse signaling pathways, a multi-pronged approach to modulate the manifold effects of burn on muscle metabolism is proposed. This approach will be achieved by the Specific Aims, which test three hypotheses:
Specific Aim 1 : (a) that burn-injury-induced activation of GSK-3b leads to mitochondrial dysfunction, decreased anabolic signaling, and muscle wasting;(b) that GSK- 3b inhibitor (SB216373) will correct these aberrations and ameliorate muscle wasting of burns.
Specific Aim 2 : (a) that SIRTI deacetylase function is depressed following burns resulting in decreased insulin signaling and mitochondrial dysfunction;(b) that an activator of SIRTI function (SRT1720) will enhance anabolic signaling and mitochondrial function resulting in maintenance of muscle mass.
Specific Aim 3 : (a) that burn injury induces increased protein famesylation leading to decreased anabolic signaling via Akt/PKB and mitochondrial dysfunction resulting in muscle wasting;(b) Inhibition of famesylation (statin, or FTI-277) will attenuate activation of Ras (a major target of farnesylation)-JNK pathway and reverse anabolic signaling aberrations and mitochondrial dysfunction and thereby prevent muscle mass loss. The studies proposed combine in vivo physiology, molecular pharmacology, and genetic techniques, together with correctional therapeutics and gene chip microarrays, which together will provide snapshots of functional genomics, and advance our knowledge of organizimal pathophysiology and function at multiple levels from genes to proteins, from cellular responses to organ (whole muscle) function. This integrated approach will delineate some of the pathways involved in muscle wasting of burns and use untested therapeutic measures to correct the aberrant signaling changes that lead to muscle wasting in mice. These studies would provide scientific rationale for pharmacologic maneuvers to prevent muscle wasting in humans following burns.

Public Health Relevance

The results of the proposed studies will not only provide novel mechanistic insights in muscle wasting of burns, but also use untested strategies to rectify the muscle wasting after burn injury. The results from these studies, when applied to patients, will help improve the clinical complications associated with loss of muscle mass and muscle function.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
2P50GM021700-32A1
Application #
8414938
Study Section
Special Emphasis Panel (ZGM1-SRC-5 (TB))
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
32
Fiscal Year
2013
Total Cost
$260,062
Indirect Cost
$110,601
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Tao, Rongya; Wang, Caixia; Stöhr, Oliver et al. (2018) Inactivating hepatic follistatin alleviates hyperglycemia. Nat Med 24:1058-1069
Nakazawa, Harumasa; Chang, Kyungho; Shinozaki, Shohei et al. (2017) iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-?B and p53. PLoS One 12:e0170391
Frydman, Galit H; Marini, Robert P; Bakthavatchalu, Vasudevan et al. (2017) Local and Systemic Changes Associated with Long-term, Percutaneous, Static Implantation of Titanium Alloys in Rhesus Macaques (Macaca mulatta). Comp Med 67:165-175
Khan, Mohammed A S; Khan, Mohammed F; Kashiwagi, Shizuka et al. (2017) An ALPHA7 Nicotinic Acetylcholine Receptor Agonist (GTS-21) Promotes C2C12 Myonuclear Accretion in Association with Release of Interleukin-6 (IL-6) and Improves Survival in Burned Mice. Shock 48:227-235
Li, Peng; Tompkins, Ronald G; Xiao, Wenzhong et al. (2017) KERIS: kaleidoscope of gene responses to inflammation between species. Nucleic Acids Res 45:D908-D914
Kashiwagi, Shizuka; Khan, Mohammed A S; Yasuhara, Shingo et al. (2017) Prevention of Burn-Induced Inflammatory Responses and Muscle Wasting by GTS-21, a Specific Agonist for ?7 Nicotinic Acetylcholine Receptors. Shock 47:61-69
Ueki, Ryusuke; Liu, Li; Kashiwagi, Shizuka et al. (2016) Role of Elevated Fibrinogen in Burn-Induced Mitochondrial Dysfunction: Protective Effects of Glycyrrhizin. Shock 46:382-9
Agarwal, Shailesh; Loder, Shawn; Brownley, Cameron et al. (2016) Inhibition of Hif1? prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci U S A 113:E338-47
Shank, Erik S; Martyn, Jeevendra A; Donelan, Mathias B et al. (2016) Ultrasound-Guided Regional Anesthesia for Pediatric Burn Reconstructive Surgery: A Prospective Study. J Burn Care Res 37:e213-7
Copps, Kyle D; Hançer, Nancy J; Qiu, Wei et al. (2016) Serine 302 Phosphorylation of Mouse Insulin Receptor Substrate 1 (IRS1) Is Dispensable for Normal Insulin Signaling and Feedback Regulation by Hepatic S6 Kinase. J Biol Chem 291:8602-17

Showing the most recent 10 out of 110 publications